Studying Photon Structure at Electron-Ion-Collider

Xiaoxuan Chu

Central China Normal University & Brookhaven National Lab

Outline

- Introduction
- Photon structure at EIC
 - Di-jet & Di-hadron method
 - > Validating Monte Carlo with HERA data
 - Separation of direct and resolved process
 - \succ Reconstruct x_{γ}
 - Jets from photon side & jets from proton side
- Summary

Problem?

- Does the kink occur at the same Q² for eA and for polarized ep
- Photon structure as fct. of Q²

Introduction

- Behavior of the exchanged photon:
 Bare photon state
 Hadronic photon state
- Photon can be superposition of above states!

 The "internal structure" of photons is a manifestation of quantum fluctuations

> Photon splits into parton content ($t \approx E / M^2$)

We measure the photon structure in quasi-real photoproduction
 Low Q² events

Structure of the photon

Unpolarized photon structure:

arXiv:9504004, arXiv:9710018, Eur. Phys. J. C 10, 363{372 (1999), DESY 97-164

 Polarized photon structure: (critical input for ILC γγ option) no data theory: Z. Phys. C 74, 641—650 (1997) and arXiv:971125

Resolved/direct process

- "Direct process" category
 - Point-like photon(no substructure)
 - $\succ x_{\gamma}$ is close to 1

PGF: Di-jet produced

• "Resolved process" category

- Hadronic photon
- $\succ x_{\gamma}$ is smaller than 1
- Di-jet/di-hadron production
- Separate di-jet(di-hadron) produced in resolved and direct processes, to get clear resolved process.

Similar with pp collision

Di-jet / Di-hadron method

- Di-hadron method
 - \succ Two hadrons with highest P_T

Di-jet method > Two jets with highest *p_T*

Reconstruct x_{γ} by using dijet/di-hadron as observables:

$$\left| x_{\gamma}^{rec} = \frac{1}{2E_{e}y} (p_{T1}e^{-\eta_{1}} + p_{T2}e^{-\eta_{2}}) \right|$$

 Parton densities in the photon can be extracted by measuring di-jet cross section

PYTHIA simulation confronted with HERA data

Kinematics cuts from HERA:

27GeV×820GeV

0.2<y<0.83

 $E^{jet1}_{T}, E^{jet2}_{T} > 7.5 \text{ GeV}, E^{jet1}_{T} + E^{jet2}_{T} > 20 \text{ GeV}, |E^{jet1}_{T} - E^{jet2}_{T}|/(E^{jet1}_{T} + E^{jet2}_{T}) < 0.25$ $|\Delta \eta^{jets}| < 1, 0 < \eta^{jet1} + \eta^{jet2} < 4$

Strong correlation observed between x_{γ}^{input} and the input x_{γ}^{rec} used in the simulation indicates the di-jet observable is ideal for x_{γ} reconstruction.

PYTHIA simulation confronted with HERA data

- Reconstructing x_{γ}^{rec} provides a good way to separate direct/resolved contribution($x_{\gamma}^{rec} < 0.75$)
- Our simulation can match the existing data perfectly

Photon structure at EIC

- Statistic description
 - 1. Basic parameters

Parameter	Set
Ee	20 GeV
Ер	250 GeV
Q ²	< 1
x	10 ⁻⁹ — 0.99
Proton PDF set	CTEQ5
N _{evt} (million)	25
σ (microbarn)	54.7
L _{int} (pb ⁻¹)	0.457

CTEQ5 shows the best description of cross section at low Q²

2. Di-jet produced in ep collision through hard scattering

Kinematics cuts for di-hadron/di-jet methods

Di-hadron cut:

- 1. Two highest $p_{T,} p_{T}^{trig} > 2GeV, p_{T}^{asso} > 1GeV$
- 2. π/K/p

Di-jet cut:

- 1. Two highest p_T , p_T^{trig} >5GeV, p_T^{asso} >4.5GeV
- 2. Inside the jet, stable particle p_T >250MeV

$\eta_{\rm LAB}$ separation

- For both methods:
 - ➤ At positive η_{LAB} , especially $\eta_{LAB} > 2$, the cross section is dominated by resolved process.

 $\eta^{_{asso}}_{_{LAB}}$ distribution of associate hadron/jet shows the same results

Reconstructing x^{rec}_{γ}

Di-hadron method

- Both di-hadron and di-jet methods can help us separate resolved/direct process.
- Di-jet method provides a better way to reconstruct x^{rec}_γ

Di-jet method

x^{rec} , separation

• Di-jet method shows better separation of resolved and direct photon

Di-jet cross section

 The simulation shows the capability to measure the cross section for di-jet production, with high accuracy in a wide kinematic range at EIC and extract the photon PDFs from a global fit.

Parton-jet match

- As we have known how to separate "direct" and "resolved" process, then we measure jet kinematics in resolved process
- Basic info about resolved process and how to tag di-jet back to two final partons

- "Path" to do parton-jet match:
 - beamparton one final parton one jet of di-jet
 - tgtparton another final parton another jet of di-jet

EIC Users' Meeting, July 2016

Jet from photon side

Jet from proton side

How to match di-jet with two final partons

Geometric match:

$$\Delta R\{parton - jet\} = \sqrt{\Delta \phi^2 + \Delta \eta^2}$$

What I used in the analysis $\Delta R \{ parton - jet \} < 0.5$

If Pseudorapifity matches, what about the **angle correlation** between parton and jet:

Photon side jet and proton side jet hadrons $\eta_{LAB} > 0$ electrons $\eta_{LAB} < 0$

Summary

- In resolved processes, photon has a hadronic structure
 - Di-jets produced in resolved and direct process can be well separated at EIC
- Photon PDFs can be extracted by reconstructing x_{γ}
 - $\succ x_{\gamma}^{rec}$ is correlated with input x_{γ}
 - We can effectively access the underlying photon PDFs by measuring di-jet cross section in quasi-real photoproduction at EIC
- Jet from photon side goes more to negative rapidity

Distinguish jets from beam side and target side

Will use LHC jet variables to separate gluon and quark jets statistically

backup

Flavor match: beamparton – index 9 tgtparton – index 10

Quark jet and gluon jet

- Quark jet is more collimated than gluon jet
 - Choose a R cut with maximum difference value of jet profile, give possibility of types of jets

Di-jet cross section on different photon PDF sets

Di-jet cross section on different photon PDF sets

- **Answer:** It dominated by gluon jet if we only consider contribution from photon side jet.
- Conclusion: Gluon distribution of the photon is sensitive to di-jet cross section. Photon PDFs can be extracted by measuring the di-jet cross section in photoproduction process.