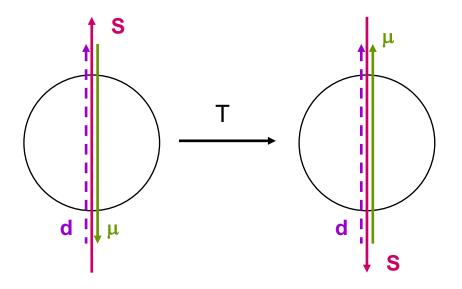


Neutron Electric Dipole Moment (EDM) Measurements

Liang Yang

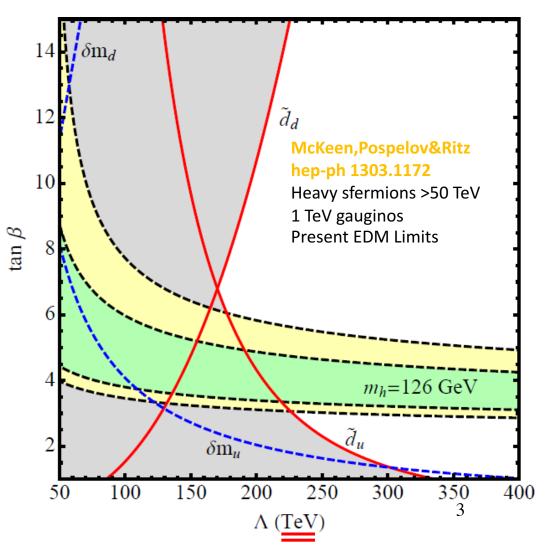
University of Illinois at Urbana-Champaign


CPAD Instrumentation Conference

Oct. 8, 2016

Neutron Electric Dipole Moment and T Violation

- has magnetic moment, μ
- electric dipole moment, d?
 - violates time reversal symmetry

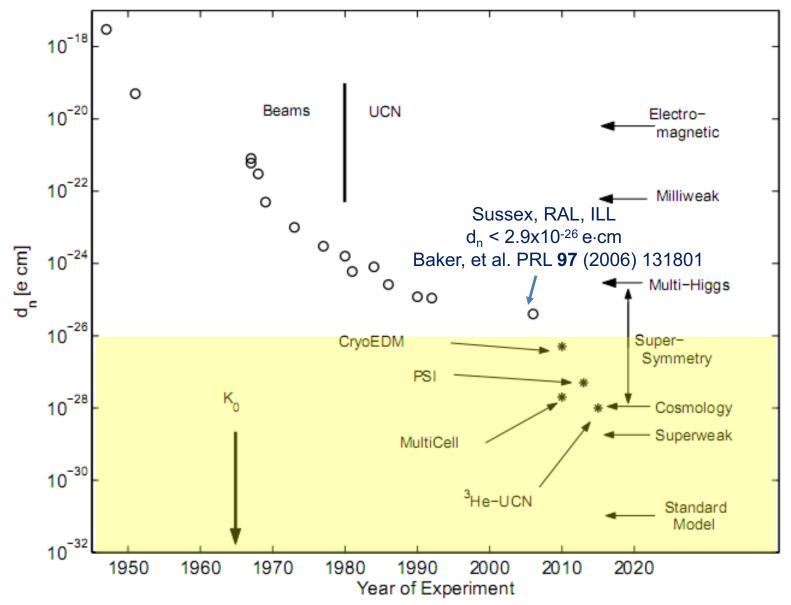


- Time reversal is violated in standard model
 - T violation observed in K⁰ decays
 - Not sufficient to explain the baryon asymmetry of the Universe
- Theories beyond standard model predict CP violation
 - e.g. supersymmetry (SUSY): $\mathbf{d}_n \neq \mathbf{0}$

Neutron Electric Dipole Moment

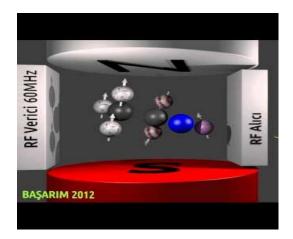
Search for physics beyond the Standard Model

- If EDM is non-zero, must be new physics
- Strong constraints on SUSY especially <u>with</u> LHC data



EDM Measurements

• Electron


- paramagnetic atoms: Tl Regan, et al. PRL 88 (2002) 071805
 - d_e < 1.6x10⁻²⁷ e·cm
- molecules:
 - YbF d_e < 1.05x10⁻²⁷ e⋅cm Hinds, et al. Nature 473 (2011)
 - ThO d_e < 8.7x10⁻²⁹ e·cm J. Baron, et al. Science 343 (2014) 269
- Nuclei
 - Hg Griffiths, et al. PRL 102 (2009) 101610
 - d_{Hg} < 3.1x10⁻²⁹ e⋅cm
 - [Ra trapped atom: ANL]
 - [p, d storage ring proposal: BNL]

Neutron EDM Measurements

nEDM Measurement

- Measure precession frequency of neutron (magnetic) moment
 - like nuclear magnetic resonance experiment

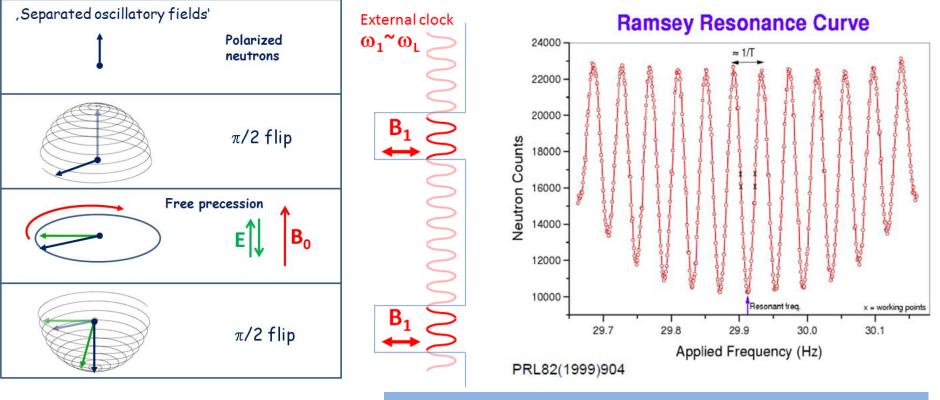
 precession frequency depends on magnetic moment, magnetic field

 $f = 2\mu_{B}B / h$

 add electric field E (parallel or antiparallel to B)

$$f = 2\left(\mu_n B \pm d_n E\right) / h$$

- Can isolate small $d_n E$ piece by subtracting precession frequencies


$$f_{\uparrow\uparrow} - f_{\uparrow\downarrow} = 4d_n E / h$$

For
$$\mu_E = 10^{-28}$$
e·cm and $E = 75$ kV/cm,
 $\Delta f \sim 7.5$ nHz.

6

Separated Oscillatory Fields Methods

• Particle beam or trapped particles

Spin Analyzer

Method pioneered by N. Ramsay

EDM changes Larmor precession: $\frac{h\omega_L}{2} = \mu B \pm dE$

The First Modern Experiment

Jim Smith, ca. 1950

J. H. Smith, E. M. Purcell & N. F. Ramsey, Phys. Rev. 108 (1957) 120.

nEDM Experimental Sensitivity

- Statistical precision given by: $\sigma \propto 1/E\sqrt{Nt}$
 - -E is the electric field.
 - -N is the number of particles measured.
 - -t is the time they are exposed to the *E* and *B* fields.
- Systematic errors, systematic errors, systematic errors...
 - Reduce and monitor magnetic field gradients
 - Multiple measurement cells with opposite $\vec{E} \cdot \vec{B}$
 - Multiple measurement techniques

Neutron EDM Searches

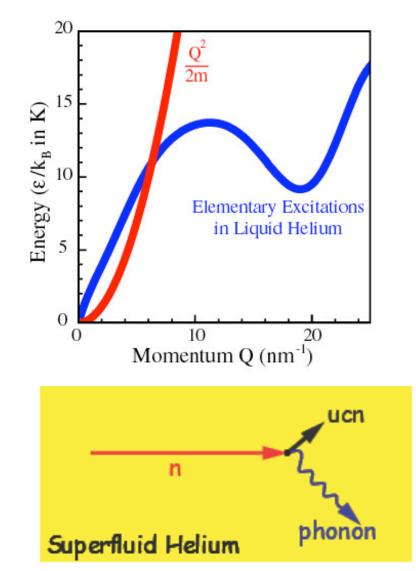
Experiment	UCN source	cell	Measurement techniques	<mark>σ_d Goal</mark> (10 ⁻²⁸ e-cm)
Present neutron EDM limit < 300				
ILL-PNPI	ILL turbine PNPI/Solid D ₂	Vac.	Ramsey technique for ω E=0 cell for magnetometer	Phase1<100 < 10
ILL Crystal	Cold n Beam	solid	Crystal Diffraction Non-Centrosymmetric crystal	< 100
PSI EDM	Solid D ₂	Vac.	Ramsey for ∞, external Cs & Hg comag. Xe or Hg comagnetometer	Phase1 ~ 50 Phase 2 < 5
Munich FRMII	Solid D ₂	Vac.	Room Temp. , Hg Co-mag., also external 3He & Cs mag.	< 5
RCNP/TRIUMF	Superfluid ⁴ He	Vac.	Small vol., Xe co-mag. @ RCNP Then move to TRIUMF	< 50 < 5
SNS nEDM	Superfluid ⁴ He	⁴ He	Cryo-HV, ³ He capture for ω, ³ He co-mag. with SQUIDS & dressed spins, supercond.	< 5
JPARC	Solid D ₂	Vac.	Under Development	< 5
JPARC	Solid D ₂	Solid	Crystal Diffraction Non-Centrosymmetric crystal	< 10?
LANL	Solid D ₂	Vac.	R & D, Ramsey SOF, Hg co-mag.	~ 30
= sensitivity < 5 x 10^{-28} e-cm				

Slide thanks to Brad Filippone

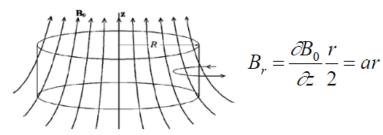
Some Key Technologies for Next Generation neutron EDM experiment

- Strong UCN sources with superthermal production, SO₂, SD₂, LHe, etc
- Improved control of magnetic environment: shield house, etc
- Better magnetic field measurement: co-magnetometer, SQUID, atomic vapor cell
- Improved high voltage and uniform magnetic field generation

Ultracold Neutrons

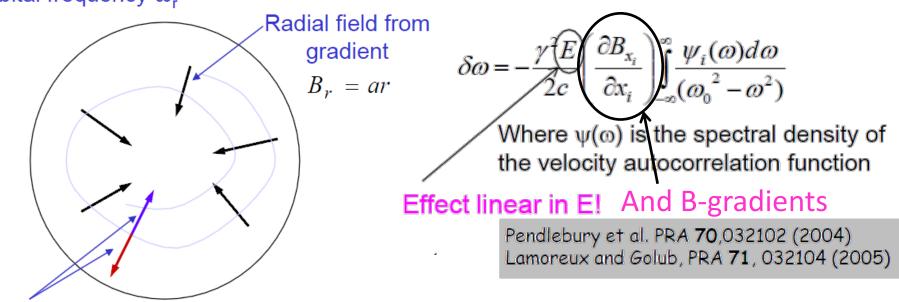

- Neutrons produced with 'nuclear energies' (MeV)
 - reactor, accelerator
- Slow with moderators: C, H₂O, D₂O, SD₂...
- Neutrons of sufficiently low energy interact coherently with nuclei
 - 'ultracold neutrons', E ~ 100 neV, V ~ 5 m/s
 - Can be trapped by materials walls

Bottle lifetime can be a few hundred seconds.


Superthermal Production of UCN

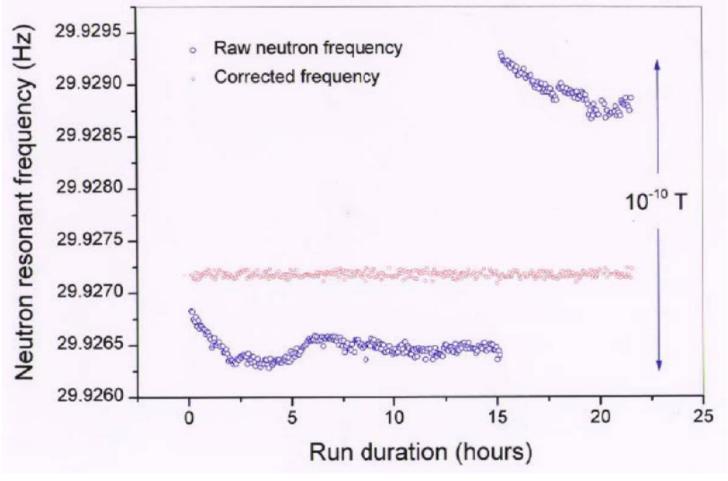
R.Golub and J.M.Pendlebury, Phys. Lett. A 62,337,(1977)

- 8.9 cold neutrons get downscattered in superfluid ⁴He by exciting elementary excitation.
- Up-scattering process can be suppressed at low temperature
- Solid deuterium and oxygen sources have also been studied and implemented.
- Can improve UCN density from a few UCN per cm³ to a few hundred per cm³, but UCN extraction is tricky.



Geometric Phase (systematics)

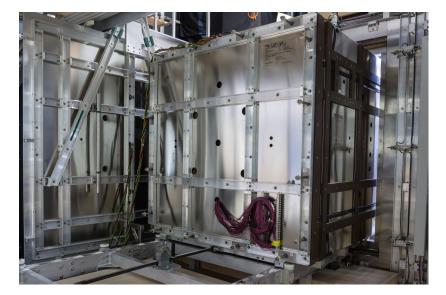
Consider particles in circular orbits with orbital frequency ω_{r}

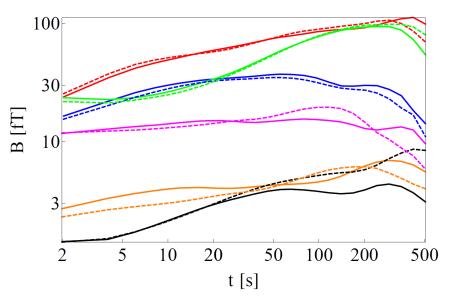

- Some systematics does not cancel by flipping the E field.
- Requires detailed studies

E×v field changes sign with direction

Using "Co-magnetometer" to correct for Magnetic field fluctuation

Magnetic Field Drift Correction




Data: ILL nEDM experiment with ¹⁹⁹Hg co-magnetometer

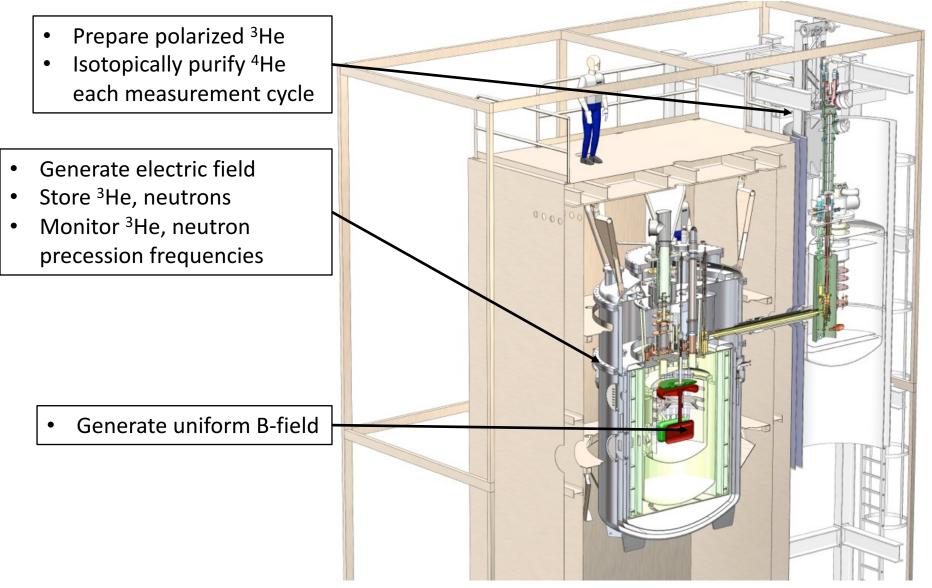
Magnetic Shielding House (TUM)

- Magnetic field: shielding
 - multi-layer
 - Degaussing!
 - (700 ± 200) pT and a field gradient less than 300 pT/m.
 - 10⁶ damping of external field at mHz frequency.

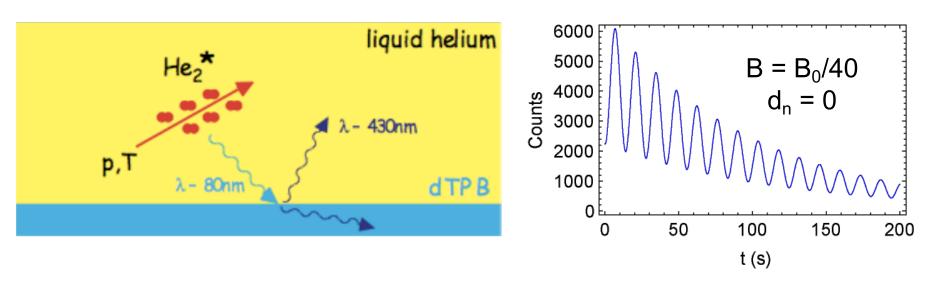
I. Altarev, et al. Rev. Sci. Inst. **85** (2014)075106, I. Altarev, et al. J. Appl. Phys. 117, 183903 (2015)

SNS nEDM Experiment

R. Golub and S. Lamoreaux. Physics Reports 237, 1 (1994)


Improve statistical precision by x100.

- <u>Increase E</u>: LHe permits very large electric fields (~70 kV/cm in our measurement cell).
- <u>Increase N</u>: LHe allows production of a high density of "ultracold" neutrons (UCN). ~few 10² UCN/cc
- <u>Increase t</u>: With T < 0.5K UCN can be stored for ~ a thousand seconds.


Additionally liquid helium allows use of Helium-3 as a:

- <u>Spin analyzer</u>, providing continual measurement of the precession frequency
- •<u>Co-magnetometer</u>, providing exquisite monitoring of the magnetic field

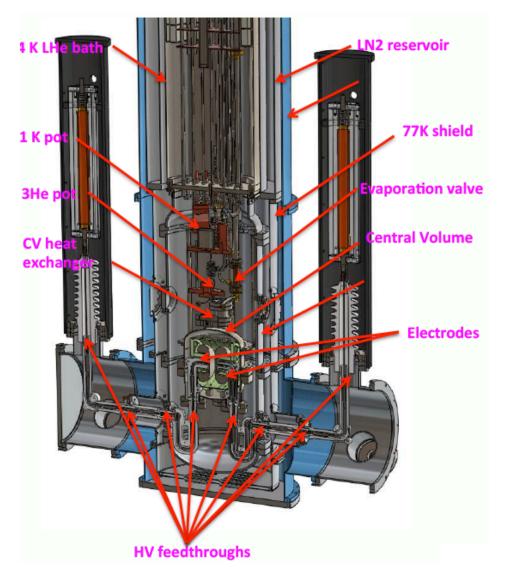
Experiment Conceptual Design

Measuring Neutron Precession using Helium Scintillation

- Neutron precesses at a slight different frequency than 3 He, ~ 10%.
- Neutron absorption on ³He is highly spin dependent. Reaction products of n+³He→p+T generates UV scintillation (80 nm) in LHe.
- The UV photons are down-converted before detection.
- Spin dependent n ³He absorption reaction measures the difference in precession frequencies between neutron and ³He.

Experimental Cell and Light Collection

Cells with 1,800 second wall loss time.



Cell inner walls need to be compatible with polarized neutron and ³He. dTPB in different chemical matrices under study.

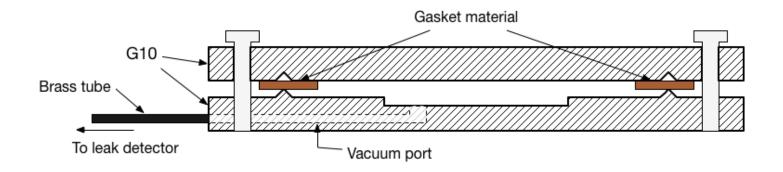
Light collection test (ORNL) Fiber based collection scheme

High Voltage R&D

Medium scale HV test setup at LANL

- High field in liquid helium
- High voltage generation of 500 – 600 kV
- Neutron friendly electrodes

Surface-modified acrylic electrodes achieved >85 kV/cm at 0.5K.



Summary

- Neutron EDM measurements are very sensitive probes for T violation and physics beyond Standard Model.
- Several experiments seek ~ x100 improvement in sensitivity
 - Systematic effects critical
 - Development and implementation of new technologies will be key.

Cryogenic Techniques Development

Superfluid-tight, non-metallic flanges demonstrated w/ 4" diameter.

Kapton bellows successfully tested for 500 strokes in liquid helium.

