Development of wire chamber with tolerance for high rate burst pulse for DeeMe experiment.

> Hiroaki Natori on behalf of DeeMe Collaboration

> > **IBS CAPP**

Mu-e conversion

Experimental strategy

- SINDRUM II
 - DC beam, heavy nuclei
 - O(1) beam or cosmic B.G.

Signal window

Prompt B.G. $\pi^-+(A, Z) \rightarrow (A, Z-1)^*,$ $\gamma \rightarrow e^+e^-$ etc. DIO (<105MeV/c) or signal (=105MeV/c) e⁻

- Our approach
 - Pulsed beam, delayed signal window, light but not too light nucleus
 - Heavier nucleus, larger overlap with muon wave function, but shorter lifetime
- Need more intense beam

DeeMe vs Mu2e or COMET

AGeV MR Main Ring		COMET, Mu2e	DeeMe
	Primary Beam	8GeV, ~1us between bunches	3GeV, ~40ms between bunches
	Anti-proton background	Possible (8GeV initial proton)	No (3GeV initial proton)
	B.G. by off- timing proton	Possible (Slow extraction)	No in principle (Fast extraction)
	Cosmic-ray B.G.	Needs cosmic ray veto counter	Negligible (Small duty factor, horizontal track)
	Run start	2018~(COMET Phase-I) 2020~(COMET Phase-II, Mu2e)	Soon after H-line construction in 2016
	S.E.S.	O(10 ⁻¹⁵)(COMET Phase-I), O(10 ⁻¹⁷)(COMET Phase-II, Mu2e)	1x10 ⁻¹³ (Carbon) 2x10 ⁻¹⁴ (SiC)

DeeMe vs Mu2e or COMET

AGRAPHICAL AGRAPHICAL		COMET, Mu2e	DeeMe	
	Primary Beam	8GeV, ~1us between bunches	3GeV, ~40ms between bunches	
	Anti-proton background	Possible (8GeV initial proton)	No (3GeV initial proton)	
	B.G. by off- timing proton	Possible (Slow extraction)	No in principle (Fast extraction)	
 3GeV Fast extraction vs 8 GeV Slow extraction Less BG in delayed signal window with Fast extraction Less BG in delayed signal window with Fast extraction More protons hits the production target → More prompt charged particles 				

DeeMe vs Mu2e or COMET

What happens on MWPC with prompt burst?

Space charge effect

Avalanche multiplication makes a sheath of ions along wire

Too many prompt burst × avalanche multiplication = dense sheath of ions

Space charge effect

HV switching

HV switching

Geometry of chamber for switching

Special geometry is needed for dynamic gas gain control with potential wire HV switching

Gas gain and voltage on potential wire (by GARFIELD++)

Anode wire: 1450V Potential wire: 0V Expected gas gain: 10⁴

Anode wire: 1450V Potential wire: 1450V Expected gas gain: 3

Discharge voltage vs wire pitch

 pitch 0.7mm, Ar/C2H6=50/50 enough separation between discharge-nominal voltage

Wire sag due to electrostatic force

Wire sag < 50um for 0.7mm pitch at nominal voltage, but ...

Force on wire

Switching operation scheme

10us << natural frequency, small impact

How to achieve fast ramping (O(100ns))?

Drain-Source voltage=1700V, Drain current=3A Turn on/off delay time= 19/200ns, Rise/Fall time=21/55ns

> Question: Anode wire have R, L, C Driving it ~100ns is trivial?

Wire ramping test with handmade circuit

CPAD 2016 @ Caltech

Prototype HV switching module

Ordered a company for design and construction. Prototype HV switching module.

(FYI, recent MOSFET made of SiC gives better performance)

TTL timing input Pulsed HV output

Operation verification

Switching period

Construction of final chamber

- One of the final chamber
 - 250mm x 200mm active region
 - 0.7mm wire pitch
 - 3mm between cathodewires
 - 3mm strips for X readout, 15mm strips for Y
 - Quit wire readouts. Only cathode strip readouts (To minimize channel)

Readout amplifier w/ high current tolerance

- Developed from 2-stage "RADEKA" amplifier
- PZC for canceling long tail by slow ion movement
- Large current tolerance by tuning capacitance, resistance etc.

Damping resonance

Test experiment setup

Delayed signal observation

CPAD 2016 @ Caltech

• Developed a wire chamber which tolerate to huge prompt burst and detect electron w/o effect of space charge effect by dynamic gain control with HV switching.

• I'm happy if this work stimulate your interest. Idea of application to the other experiments are welcome.

• Thanks for your attention.

End of slide

CPAD 2016 @ Caltech

DeeMe

Keys of DeeMe

- Unique scheme of using production target also as muon stopping target
 - Simpler, then earlier realization : OK
- Fast extraction of primary 3GeV proton
 - Less backgrounds (Beam related, Cosmic) : Good

- Novel detector, not normal one: why?
 - Too much prompt burst particles!!

Detector requirement

- Low mass for less multiple scattering for better tracking
 - Gas chamber suits. Thin (<300um XY reading) Si detector can be another candidate, but too expensive.
- O(10⁸) prompt particles / pulse Instantaneous hit rate ~100GHz/mm²
 - Normal gas chamber become blind for delayed signal

 Invented HV switching technique, which enables dynamic gas multiplication gain control

Preparation status

- Facility
 - RCS 3GeV, 500kW currently, will be upgraded to 1MW
 - H-line construction in 2016
 - At first starts with current graphite target. SiC under development
- DeeMe
 - Detector operation verification done
 - 1st,2nd chamber constructed, small modification will be done
 - 3rd,4th chamber parts constructed. Assemble soon.
 - Spectrometer magnet ready
 - Readout electronics ready

PACMAN Magnet

- used for PIENU exp. @ TRIUMF, Canada
- transported from TRIUMF to J-PARC
- central field = 0.4 T (300A) for 105 MeV/c, 70 degree bending
- Test operation was successfully done in J-PARC MLF.
- Field measurement was performed.

J-PARC MUSE beamlines

- D-Line (Decay Muon Line)
 - Operating
- U-Line (Ultra Slow Muon Line)
 - Under commissioning
- S-Line (Surface Muon Line)
 - Under construction
- H-Line (High Momentum Line)
 - Large acceptance (130msr)
 - Momentum tunable
 - Mu HFS, g-2, DeeMe mu-e conversion experiments are proposed

Space charge effect

Steep slope of electrical field near wire accelerate electron Energy in mean free path > ionization, then avalanche occur

Too many ions near wire suppress acceleration of electron. Resulting in gain reduction

Cause: too lot ions

Solution: Sweeping out initial electrons by prompt burst w/o avalanche

How to operate chamber w/o kicker magnet

Amplifier output

Two issues Chamber: LC resonance Amplifier: Saturation

LC resonance

Increased readout capacitance 2nF -> 10nF

Overdamping when $R^2 > 4L/C$

Large prototype chamber

- 0.7mm pitch 300mm length
- Wire + cathode readout

Setup of test beam experiment

 Succeed to observe delayed electron after a burst pulse (instantaneous rate ~70GHz/mm², pulse width200ns) Approximately full condition with large prototype chamber

But discharge occur after several hours of operation 44

HV control with Raspberry-pi (By Y. Takezaki Osaka City Univ.)

- Connect iseg HV module with Raspberry-pi
- Python program gives web GUI interface and controls the module
- Trip of either anode or potential wire voltage trigger fast shut down of both the wires

Handmade HV switching module

- Former HV module was not suite for new scheme
- Utilized MOS-FET based Behlke switching module
 - Partially because having not enough time to be ready for beam experiment

- Behlke module have protection for the module, stopping when detecting something
 - Due to this protection, we should have make the switching ramping up speed very slow (a few µs)

Chamber worked during 2 days of data taking time, giving delayed signal of $\mu \rightarrow evv$ after μ^+ pulses with 10⁴ gain operation

Voltage application for 3×10⁴ gain was ok, waited for beam, but beam didn't come

Again, This setup

LC resonance with Final chamber

