Development of wire chamber with tolerance for high rate burst pulse for DeeMe experiment.

Hiroaki Natori
on behalf of DeeMe Collaboration

Mu-e conversion

Experimental strategy

- SINDRUM II
- DC beam, heavy nuclei
- $\mathrm{O}(1)$ beam or cosmic B.G.

> Prompt B.G. $\begin{gathered}\pi^{-}+(\mathrm{A}, \mathrm{Z}) \rightarrow(\mathrm{A}, \mathrm{Z}-1)^{*}, \\ \gamma \rightarrow \mathrm{e}^{+} \mathrm{e}^{-} \text {etc. }\end{gathered}$

- Our approach
- Pulsed beam, delayed signal window, light but not too light nucleus
- Heavier nucleus, larger overlap with muon wave function, but shorter lifetime
- Need more intense beam

DeeMe vs Mu2e or COMET

	COMET, Mu2e	DeeMe
Primary Beam	8 GeV , ~1us between bunches	3 GeV , $\sim 40 \mathrm{~ms}$ between bunches
Anti-proton background	Possible (8GeV initial proton)	No (3GeV initial proton)
B.G. by offtiming proton	Possible (Slow extraction)	No in principle (Fast extraction)
Cosmic-ray B.G.	Needs cosmic ray veto counter	Negligible (Small duty factor, horizontal track)
Run start	2018~(COMET Phase-I) 2020~(COMET Phase-II, Mu2e)	Soon after H-line construction in 2016
S.E.S.	$\begin{gathered} \mathrm{O}\left(10^{-15}\right)(\mathrm{COMET} \\ \text { Phase-I), } \\ \mathrm{O}\left(10^{-17}\right)(\mathrm{COMET} \\ \text { Phase-II, Mu2e) } \end{gathered}$	$\begin{gathered} 1 \times 10^{-13}(\text { Carbon }) \\ 2 \times 10^{-14}(\mathrm{SiC}) \end{gathered}$

DeeMe vs Mu2e or COMET

DeeMe vs Mu2e or COMET

RCS 3GeV/c, 1MW

Fast extraction 40 ms cycle
MR 8GeV/c, 56kW

Slow extraction 1μ s cycle

1. Prompt beam

Nue mon Roll of all these parts in a DeeMe

 production target2. Beamline between production-stopping target

- Simple, early realization
- Less sensitivity
- Huge prompt burst

What happens on MWPC with prompt burst?

Space charge effect

Unwanted burst pulses comes before the signal

Avalanche multiplication makes a sheath of ions along wire

Too many prompt burst \times avalanche multiplication $=$ dense sheath of ions

Space charge effect

$$
\begin{gathered}
\text { Prompt burst pulse } \\
\begin{array}{c}
-+(\mathrm{A}, \mathrm{Z}) \rightarrow(\mathrm{A}, \mathrm{Z}-1)^{*}, \\
\gamma \rightarrow \mathrm{e}^{+} \mathrm{e}^{-} \text {.tc. }
\end{array} \\
\text { Sweeping initial electrons out } \\
\text { W/o generating ions will solve it! }
\end{gathered}
$$

Avalanche multiplication makes a sheath of ions along wire

Too many prompt burst \times avalanche multiplication $=$ dense sheath of ions

HV switching

HV switching

Detectable

Anode wire (1.5 kV) Cathode (0 V)

 Potential wire (0V@data window)

Nominal gain operation during signal window

OV cathode

All wires with HV 0 V cathode
same as "Normal" MWPC Gain really suppressed?

Geometry of chamber for switching

Special geometry is needed for dynamic gas gain control with potential wire HV switching

$1 / 2 \mathrm{~s}=0.7 \mathrm{~mm}, \mathrm{~d}=3 \mathrm{~mm}$ seems fine

Gas gain and voltage on potential wire (by GARFIELD++)
Anode wire: 1450V
Potential wire: 0V
Expected gas gain: 10^{4}
Anode wire: 1450V
Potential wire: 1450 V
Expected gas gain: 3

Discharge voltage vs wire pitch

- pitch $0.7 \mathrm{~mm}, \mathrm{Ar} / \mathrm{C} 2 \mathrm{H} 6=50 / 50$ enough separation between discharge-nominal voltage

Wire sag due to electrostatic force

Force on wire

Anode wire (1.5kV)

Potential wire (0V@data window)

Force:by wire tension

S

Strong electrostatic force due to short wire distance
Effectively, small restoring force. Small shock may move wire large

A few 100um wire movement -> Electrical short

Switching operation scheme

Attractive force between wires Risk of short by small shock

10us << natural frequency, small impact

How to achieve fast ramping (O(100ns))?

- Low pass filter to remove noise of HV
 Extract charge from large $C \gg$ (sum of wire capacitance)

Switch
\longrightarrow To wire

Example: WPH4003-1E
Drain-Source voltage $=1700 \mathrm{~V}$, Drain current $=3 \mathrm{~A}$
Turn on/off delay time= 19/200ns, Rise/Fall time=21/55ns
Question: Anode wire have R, L, C
Driving it $\sim 100 \mathrm{~ns}$ is trivial?

Wire ramping test with handmade circuit

Prototype HV switching module

Ordered a company for design and construction.
Prototype HV switching module.
(FYI, recent MOSFET made of SiC gives better performance)

TTL timing input Pulsed HV output

Operation verification

Switching period

Succeeded dynamic gas gain control

Construction of final chamber

- One of the final chamber
- $250 \mathrm{~mm} \times 200 \mathrm{~mm}$ active region
- 0.7 mm wire pitch
- 3 mm between cathodewires
- 3 mm strips for X readout, 15 mm strips for Y
- Quit wire readouts. Only cathode strip readouts (To minimize channel)

Readout amplifier w/ high current tolerance

- PZC for canceling long tail by slow ion movement
- Large current tolerance by tuning capacitance, resistance etc.

Damping resonance

Test experiment setup

Intensity control by heater power

Pulse electron 200ns width

Collimator

Waveform from scintillator beam counter

Delayed signal observation

[10ns]

Successfully observed delayed electron after a prompt burst equivalent pulse 2 days operation w/o trouble.

- Developed a wire chamber which tolerate to huge prompt burst and detect electron w/o effect of space charge effect by dynamic gain control with HV switching.
- I'm happy if this work stimulate your interest. Idea of application to the other experiments are welcome.
- Thanks for your attention.

End of slide

DeeMe

Keys of DeeMe

- Unique scheme of using production target also as muon stopping target
- Simpler, then earlier realization : OK
- Fast extraction of primary 3 GeV proton
- Less backgrounds (Beam related, Cosmic) : Good
- Novel detector, not normal one: why?
- Too much prompt burst particles!!

Detector requirement

- Low mass for less multiple scattering for better tracking
- Gas chamber suits. Thin (<300um XY reading) Si detector can be another candidate, but too expensive.
- $\mathrm{O}\left(10^{8}\right)$ prompt particles / pulse Instantaneous hit rate $\sim 100 \mathrm{GHz} / \mathrm{mm}^{2}$
- Normal gas chamber become blind for delayed signal
- Invented HV switching technique, which enables dynamic gas multiplication gain control

Preparation status

- Facility
- RCS 3 GeV , 500 kW currently, will be upgraded to 1 MW
- H-line construction in 2016
- At first starts with current graphite target. SiC under development
- DeeMe
- Detector operation verification done
- $1 \mathrm{st}, 2 \mathrm{nd}$ chamber constructed, small modification will be done
- 3rd,4th chamber parts constructed. Assemble soon.
- Spectrometer magnet ready
- Readout electronics ready

- Single Event Sensitivity (S.E.S)

$$
S=\frac{1}{R_{\pi^{-}} \times f_{\pi^{-} \rightarrow \mu^{-}} \text {stop }} \times f_{\mathrm{C}} \times f_{\mathrm{MC}} \times A_{\mu-e} \times T
$$

$R_{\pi^{-}} \times f_{\pi^{-} \rightarrow \mu^{-} \text {stop }}=\mu^{-}$stopping rate per second

$$
A_{\mu-c}=\text { total acceptance for } \mu-e \text { electrons }
$$

$$
f_{\mathrm{C}}=\text { atomic captur rate }
$$

$$
f_{\mathrm{MC}}=\text { muon nuclear capturefraction }
$$

- Running time $=2 \times 10^{7} \mathrm{sec}$ (1 year run)
- Background (MC estimated)
Decay in Oribit
0.09
- After proton rate ($\mathrm{RaP}_{\mathrm{AP}}$) < 10-18
\rightarrow After proton < 0.027 (0.05 90\% C.L.)
- Cosmic induced
e $<0.018, \mu<0.001$
\rightarrow Detector live-time duty $=1 / 20000$
\Rightarrow Cosmic ray backgrounds are well suppressed.

S.E.S estimated by Monte Carlo study

$>2.1 \times 10^{-14}$ for SiC target
$>1.2 \times 10^{-13}$ for \underline{C} target
current upper limit
$\mathrm{BR}\left(\mu^{-} \mathrm{Au} \rightarrow \mathrm{e}^{-} \mathrm{Au}\right)<7 \times 10^{-13}$
(SINDRUM-II)

PACMAN Magnet

- used for PIENU exp. @ TRIUMF, Canada
- transported from TRIUMF to J-PARC
- central field $=0.4 \mathbf{T}$ (300A) for $105 \mathrm{MeV} / \mathrm{c}, 70$ degree bending
- Test operation was successfully done in J-PARC MLF.
- Field measurement was performed.

J-PARC MUSE beamlines

- D-Line (Decay Muon Line)
- Operating
- U-Line (Ultra Slow Muon Line)
- Under commissioning
- S-Line (Surface Muon Line)
- Under construction
- H-Line (High Momentum Line)
- Large acceptance (130msr)
- Momentum tunable
- Mu HFS, g-2, DeeMe mu-e conversion experiments are proposed

Space charge effect

Steep slope of electrical field near wire accelerate electron

Too many ions near wire Energy in mean free path > ionization, then suppress acceleration of electron. avalanche occur

Resulting in gain reduction

How to operate chamber w/o kicker magnet

200ns

Expected signal waveform of DeeMe experiment

Signal window

Potential wire
 (Switch HV, usually 0V)

Burst pulse Delayed single electron

Anode wire voltage

Ground during data-taking Less risk of noise

Ramping down $\sim 1.5 \mathrm{kV}$ within a few 100 ns

- Empirically ramping up $>100 \mathrm{~V}$ within <1 s gives risk of cutting wires

But,
Changing voltage very short term and Recovering to the former voltage Like $0 \mathrm{~V} \rightarrow 1.4 \mathrm{kV} \rightarrow 0 \mathrm{~V}$

Impulse is expected to be very small

Very short

Amplifier output

LC resonance

Probably LC resonance circuit exists somewhere Increased readout capacitance $2 \mathrm{nF}->10 \mathrm{nF}$

Overdamping when $\mathrm{R}^{2}>4 \mathrm{~L} / \mathrm{C}$

Large prototype chamber

- 0.7 mm pitch 300 mm length
- Wire + cathode readout

Setup of test beam experiment

Acrylic board \& PMTs
Cherenkov light

Intensity control by
heater power

Waveform from scintillator beam counter

Field emission electrons

Plastic scintillator
\& PMT

- Succeed to observe delayed electron after a burst pulse (instantaneous rate $\sim 70 \mathrm{GHz} / \mathrm{mm}^{2}$, pulse width200ns) Approximately full condition with large prototype chamber

But discharge occur after several hours of operation

HV control with Raspberry-pi

(By Y. Takezaki Osaka City Univ.)

- Connect iseg HV module with Raspberry-pi
- Python program gives web GUI interface and controls the module
- Trip of either anode or potential wire voltage trigger fast shut down of both the wires

Handmade HV switching module

- Former HV module was not suite for new scheme

- Utilized MOS-FET based Behlke switching module
- Partially because having not enough time to be ready for beam experiment
- Behlke module have protection for the module, stopping when detecting something
- Due to this protection, we should have make the switching ramping up speed very slow (a few $\mu \mathrm{s}$)

Chamber worked during 2 days of data taking time, giving delayed signal of $\mu \rightarrow \mathrm{ev} \mathrm{\nu}$ after μ^{+}pulses with 10^{4} gain operation

Voltage application for 3×10^{4} gain was ok, waited for beam, but beam didn't come

Again, This setup

Acrylic board
\& PMTs
Cherenkov light
Collimator
Intensity control by
heater power

Waveform from scintillator beam counter

May 2016 KURRI LINAC

Successfully observed delayed electron after a prompt burst equivalent pulse 2 days operation w/o trouble.

LC resonance with Final chamber

