Broadband Microstrip-Coupled TiN KIDs: A Scalable Detector Technology for CMB-S4

S. Golwala

Caltech CPAD2016 - 2016/10/09

Outline

Review of needs for CMB-S4

Why microstrip coupling

Why TiN KIDs

Overview of design

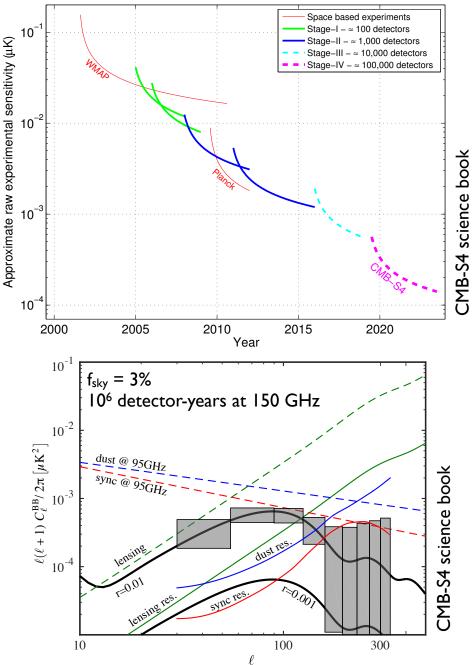
Expected performance

Review of Needs for CMB-S4

Raw Sensitivity:

10⁵-10⁶ detectors required to achieve desired sensitivity bec. limited by irreducible photon noise

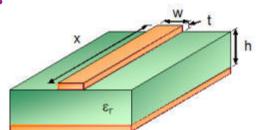
Multiplexability is critical!

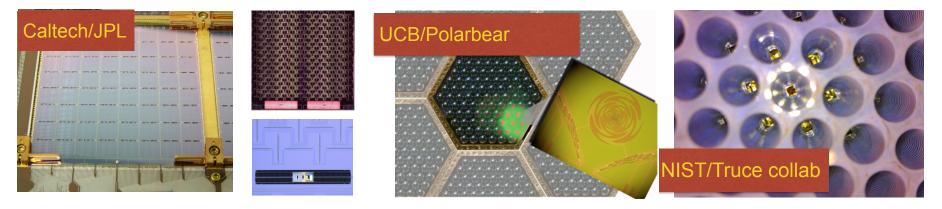

Systematics Control:

Now known that foregrounds exceed inflationary signal even in cleanest sky: need multiple spectral bands

Polarization systematics must be controlled and measured precisely

antenna/bandpass filter systematics requirements from EPIC-IM study (same sensitivity goal as CMB-S4, $\sigma(r) = 0.0005$) 100 GHz, 8.4' FWHM (some relax for finer beams)


Systematic Error	Description	Knowledge to Meet Requirement			
Δ Beam Size	$FWHM_E \neq FWHM_H, \sigma_E - \sigma_H / \langle \sigma \rangle$	1.8×10^{-3}			
Δ Beam Offset	Pointing $E \neq H$, $ \theta_E - \theta_H /\sigma$	3×10^{-3}			
Δ Ellipticity	$e_E \neq e_H, \ \psi = 0^\circ, \ e_E - e_H $	5×10^{-1}			
	$e_E \neq e_H, \ \psi = 45^\circ, \ e_E - e_H $	5×10^{-3}			
Δ Rotation	E & H not orthogonal, $ \theta_E - \theta_H - 90^\circ $	13.4'			
Pixel Rotation	$E \perp H$ but rotated w.r.t. beam major axis	2.9'			
Bandpass Mismatch	Variation in filters, $\delta \nu_c / \nu_c$	10^{-3}			


Why Microstrip Coupling?

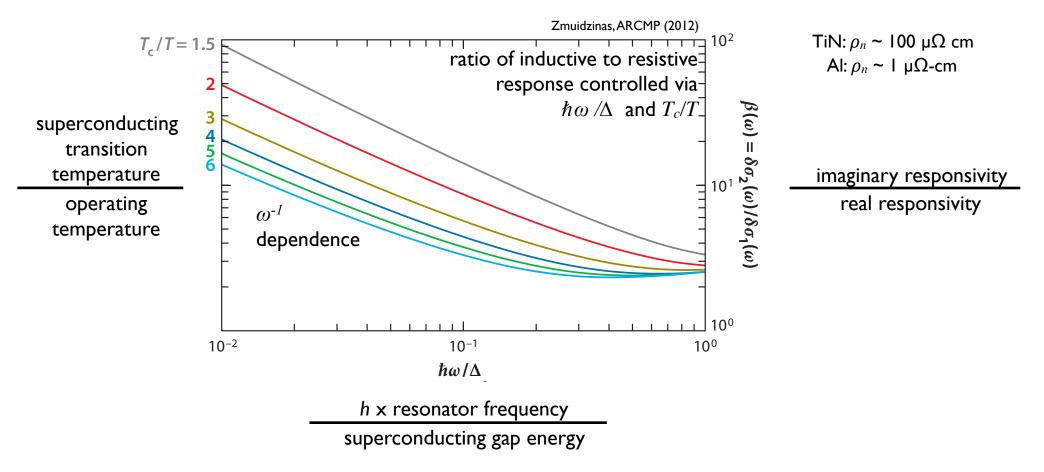
Flexible

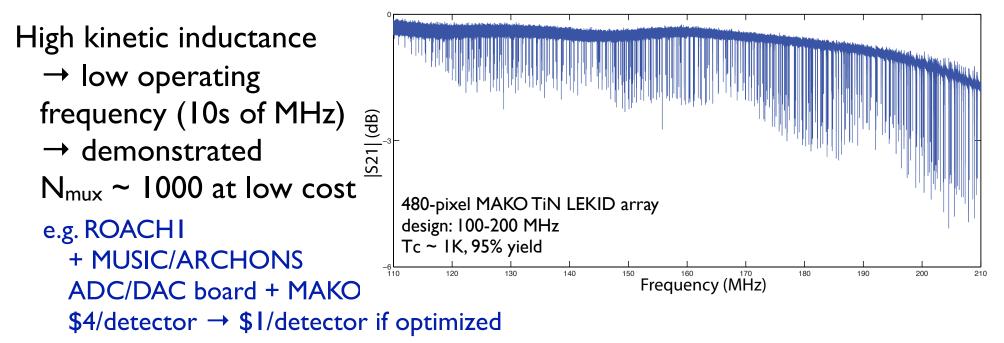
Many optical reception architectures can output onto superconducting microstripline

Microstrip enables use of bandpass filters, decouples detector size from optical reception element

Excellent systematics control demonstrated in the field for these technologies via BICEP/Keck, Polarbear, SPTpol, ACTpol

Scalable


Fully photolithographic (phased arrays), photolithographic + mass-hybridized (lenscoupled, feedhorn-coupled)


All amenable to scaling to 6" wafer fab modulo yield

High kinetic inductance fraction due to high normal state resistivity

responsivity in recombination-limited,
mm-wave quasiparticle-limited regime $\frac{d(\delta f/f)}{dP_{opt}} = -\frac{\beta(f_r, T)}{4P_{opt}Q_i}$ $\beta(f_r, T) > 2$
= ratio of imaginary (freq) to
real (Q) responsivity to qps

 $\beta \propto f_r^{-1} \propto$ kinetic inductance \propto superconducting penetration depth $\propto \rho_n^{1/2}$

e.g. BLAST-TNG ROACH2 + MUSIC/ARCHONS ADC/DAC: IK detectors also

e.g. NIKA2, A-MKID readouts

MAKO readout (no IF)

Broadband Microstrip-Coupled TiN KIDs for CMB-S4

MUSIC thermal-engineered readout module

MUSIC 8-module readout rack

High kinetic inductance

- \rightarrow low operating frequency (10s of MHz) \rightarrow high β
- → amplifier and two-level-system noise subdominant to fundamental noises (photon + recombination)

$$\mathrm{NEP}_{\mathrm{fund}}^2 = \mathrm{NEP}_{\mathrm{shot}}^2 + \mathrm{NEP}_{\mathrm{Bose}}^2 + \mathrm{NEP}_{\mathrm{rec}}^2 = 2 P_{opt} h\nu \left[1 + \frac{P_{opt}}{h\nu \,\Delta\nu} + \frac{2\,\Delta}{\eta_{abs} \,\eta_{ph} \,h\nu} \right]$$

In recombination-dominated, mm-wave quasiparticle-dominated regime:

Amplifier noise:
NEP2
amp = 2
$$P_{opt} h\nu \frac{32}{[\beta(f_r, T)]^2} \frac{P_{opt}}{P_{read}} \frac{k_B T_N}{h\nu}$$
 $P_{opt}/P_{read} < 1$
 $k_B T_N/h\nu \approx 2$ generally holds
for $T_N = 4$ K
and $\nu = 45$ GHz $\beta \approx 55$ for our design

Two-Level-System Noise:

$$\begin{split} \text{NEP}_{\text{TLS}}^2 &= \frac{16 \, P_{opt}^2 \, Q_i^2}{[\beta(f_r, T)]^2} \, S_{\delta f/f}^{\text{TLS}}(f_r^0, f_a^0, T_0, V_{d,0}, E_0) \, \frac{E_0 \, V_{d,0}}{\ell_C^2} \sqrt{\frac{2 \, \pi \, f_r \, C}{Q_i \, P_{read}}} \sqrt{\frac{f_a^0}{f_a}} \left(\frac{T_0}{T}\right)^{1.7} \, g\left(\frac{f_r}{f_r^0}\right) \\ & \text{TLS noise level} \end{split}$$

in specific geometry

scalings to desired geometry and operating parameters

high $\beta \approx 55$ for our design makes this subdominant

Broadband Microstrip-Coupled TiN KIDs for CMB-S4

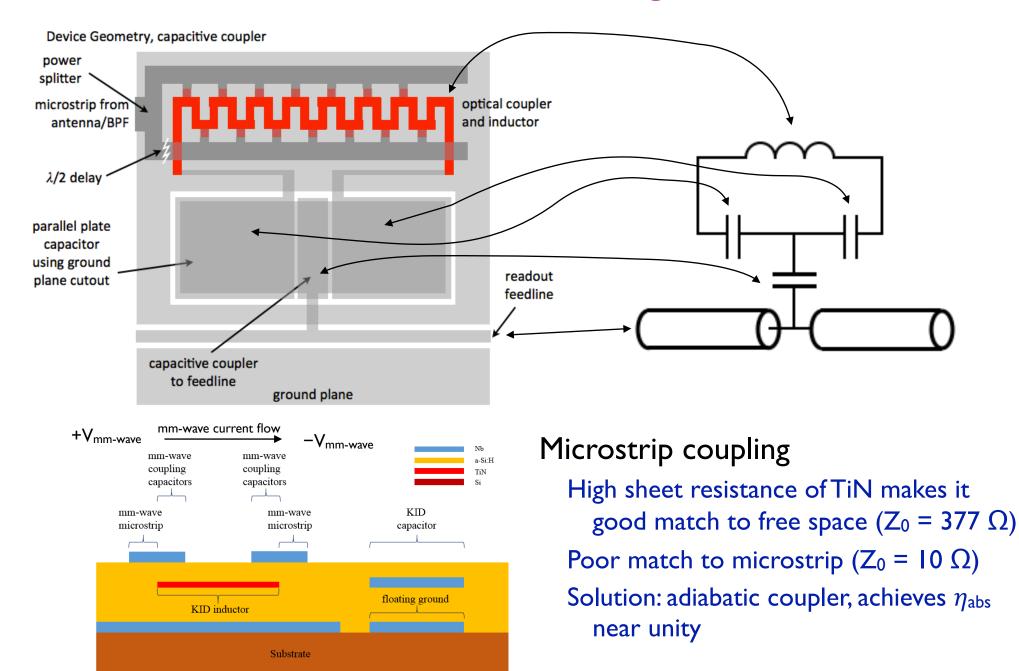
Fundamental noise level comparable to TESs:

$$\mathrm{NEP}_{\mathrm{fund}}^2 = \mathrm{NEP}_{\mathrm{shot}}^2 + \mathrm{NEP}_{\mathrm{Bose}}^2 + \mathrm{NEP}_{\mathrm{rec}}^2 = 2 P_{opt} h\nu \left[1 + \frac{P_{opt}}{h\nu \,\Delta\nu} + \frac{2\,\Delta}{\eta_{abs} \,\eta_{ph} \,h\nu} \right]$$

KIDs suffer recombination noise, TESs suffer phonon noise: both are noise on coupling to bath needed for optical power to escape

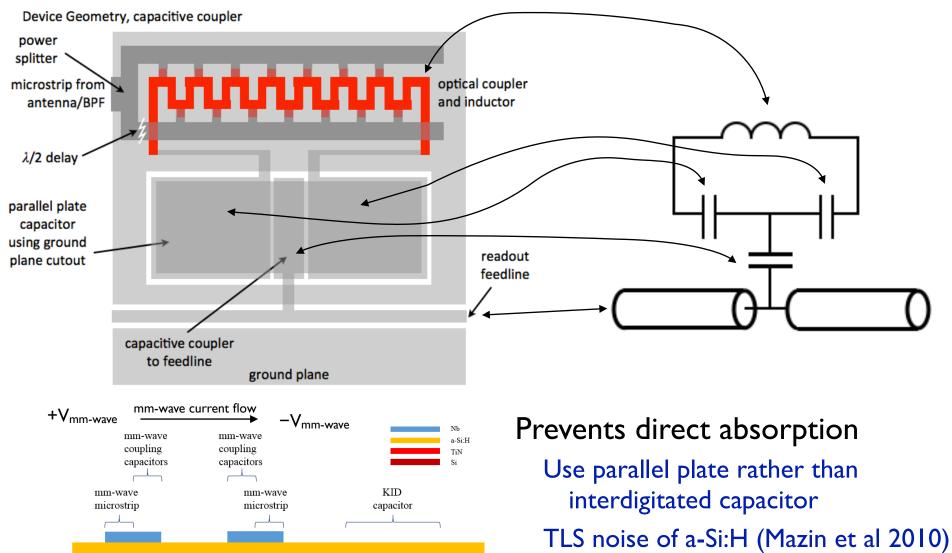
$$\operatorname{NEP}_{\operatorname{rec}}^{2} = 2 P_{opt} \frac{h \nu_{min}}{\eta_{abs} \eta_{ph}} \qquad \operatorname{NEP}_{\operatorname{G}}^{2} = 4 k_{B} \gamma (T_{c}^{\mathrm{T}})^{2} G_{c} \approx 2 P_{opt} \left(2 S \gamma k_{B} T_{c}^{\mathrm{T}} \right) \frac{T_{c}^{\mathrm{T}}}{T_{c}^{\mathrm{T}} - T}$$

Calculate for


ground-based optical loads

KID:T_C = 0.52 K,T = 0.05 K, η_{abs} near unity, η_{ph} = 1.0 at $\nu_{min} \rightarrow 0.57$ as $\nu \rightarrow \infty$ TES:T_C = 0.1 K,T = 0.05 K, γ = 0.5, safety factor S = 3

ν	$\Delta \nu$	P_{opt}	η_{ph}	$\operatorname{NEP}_{\operatorname{shot}}$	$\operatorname{NEP}_{\operatorname{Bose}}$	$\operatorname{NEP}_{\operatorname{rec}}$	$\mathrm{NEP}_{\mathrm{fund}}^{\mathrm{KID}}$	$\operatorname{NEP}_{\mathrm{G}}$	NEP_{fund}^{TES}	$\mathrm{NEP}_{\mathrm{fund}}^{\mathrm{KID}}$
[GHz]	[GHz]	[pW]		[aW/	$\sqrt{\text{Hz}}$]	[aW]	$/\sqrt{\text{Hz}}]$	[aW]	$/\sqrt{\text{Hz}}$]	$\overline{\mathrm{NEP}_{\mathrm{fund}}^{\mathrm{TES}}}$
45	13.5	1.0	0.85	8	12	8	16	6	15	1.05
100	30	1.7	0.57	15	14	12	24	8	22	1.10
150	47	2.5	0.57	22	17	15	32	9	29	1.08


Negligible difference in theory; real-world effects will dominate

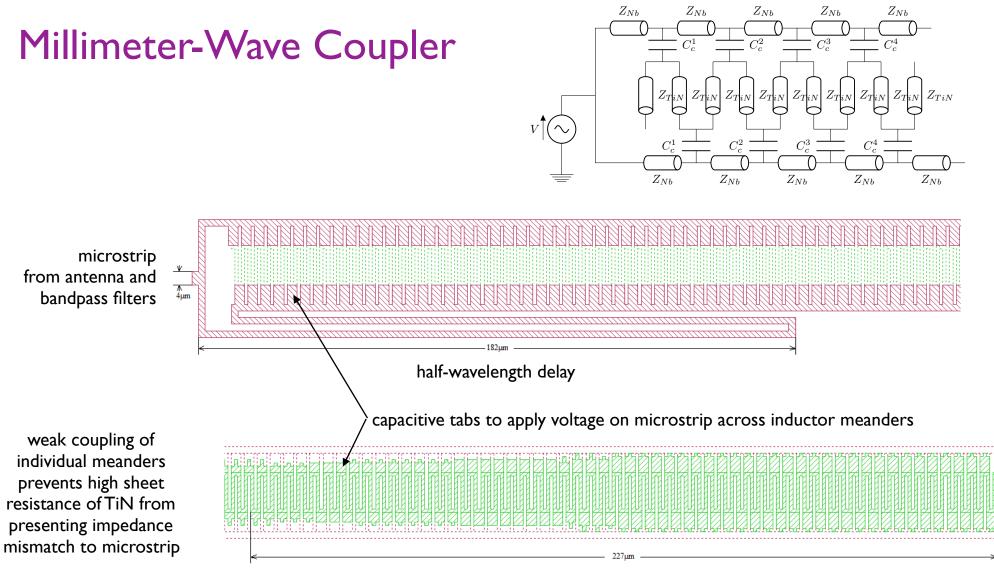
Overview of Design

Broadband Microstrip-Coupled TiN KIDs for CMB-S4

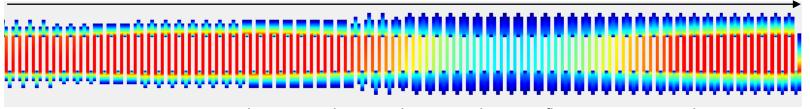
Overview of Design

good enough (v. little from inductor)

Ground plane shields inductor, capacitor via short-circuit condition


Broadband Microstrip-Coupled TiN KIDs for CMB-S4

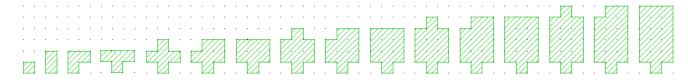
KID inductor


Substrate

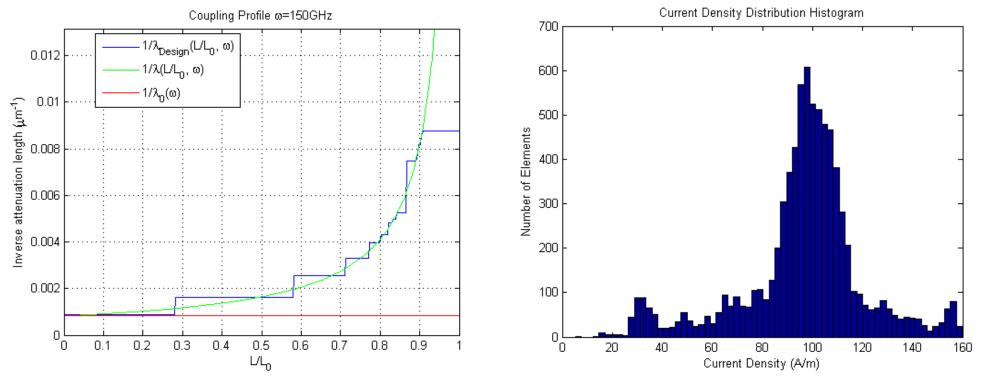
floating ground

Millimeter-Wave Coupler

increase coupling left to right by increasing capacitor size: ensure uniform mm-wave power absorption



mm-wave current density; modest standing wave due to reflection at open end

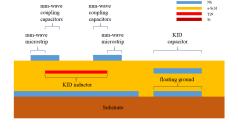

12µm

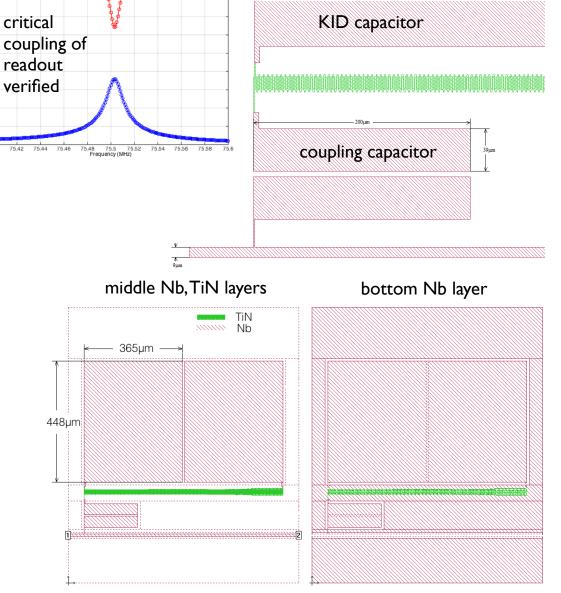
Millimeter-Wave Coupler

Increasing coupling adiabatically yields uniform mm-wave current density, power absorption

ากบนกามแกกกบนกามน	າກັບບົບການບົບການບົບການການການບົບການບົບການບົບບົນ					
0	20	40	60	80	100	A/m

Broadband Microstrip-Coupled TiN KIDs for CMB-S4


KID Design

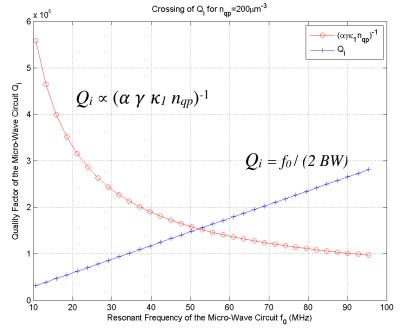

critical

readout

verified

75.42

0 IS21 IS11


Coupling to feedline

Use parallel plate capacitor like KID capacitor

Readout frequency

Maximize Q_i subject to constraint that resonator bandwidth $f_0/2Q_i$ > astronomical signal BW (50 Hz for ℓ = 5000 and 1°/s;

Qi is mm-wave qp-limited)

TiN thickness and inductor width saturate at min allowed values, 20 nm and 1 μm Limits have been chosen ensure robust fabrication (thinner/narrower possible, but concern about yield)

TiN thickness and inductor width saturate at min allowed values, 20 nm and 1 μm Limits have been chosen ensure robust fabrication (thinner/narrower possible, but concern about yield)

No explicit optimization over dielectric thickness; max value chosen for robust fab

At fixed capacitor area, increasing thickness reduces the TLS noise (δ C/C or δ f/f units) bec.TLS noise $\propto 1/\sqrt{N_{fluctuators}} \propto 1/\sqrt{V_{cap}}$, so choosing the maximum value is sensible

TiN thickness and inductor width saturate at min allowed values, 20 nm and 1 μm

Limits have been chosen ensure robust fabrication (thinner/narrower possible, but concern about yield)

No explicit optimization over dielectric thickness; max value chosen for robust fab

- At fixed capacitor area, increasing thickness reduces the TLS noise (δ C/C or δ f/f units) bec.TLS noise $\propto 1/\sqrt{N_{fluctuators}} \propto 1/\sqrt{V_{cap}}$, so choosing the maximum value is sensible
- f_0 always prefers lowest value allowed by audio bandwidth and multiplex factor because of $1/f_0$ dependence of responsivity

TiN thickness and inductor width saturate at min allowed values, 20 nm and 1 μ m

Limits have been chosen ensure robust fabrication (thinner/narrower possible, but concern about yield)

No explicit optimization over dielectric thickness; max value chosen for robust fab

- At fixed capacitor area, increasing thickness reduces the TLS noise (δ C/C or δ f/f units) bec.TLS noise $\propto 1/\sqrt{N_{fluctuators}} \propto 1/\sqrt{V_{cap}}$, so choosing the maximum value is sensible
- f_0 always prefers lowest value allowed by audio bandwidth and multiplex factor because of $1/f_0$ dependence of responsivity
- TLS noise pushes for high P_{read} . Require J < critical current density to avoid nonlinearity

Quantity	100 GHz	150 GHz
$\overline{\mathrm{NEP}_{\mathrm{ph}} \; [\mathrm{aW \; Hz^{-1/2}}]}$	21	38
$NEP_r [aW Hz^{-1/2}]$	17	30
$NEP_{amp} [aW Hz^{-1/2}]$	2	4
$NEP_{TLS} [aW Hz^{-1/2}]$	9	20
$\overline{\rm NEP_{fund} \ [aW \ Hz^{-1/2}]}$	27	48
$NEP_{tot} [aW Hz^{-1/2}]$	28	52
$\underline{\text{NEP}_{\text{tot}}^{\text{eff}} [\text{aW Hz}^{-1/2}]}$	29	53
$\mathrm{NEP}_{\mathrm{tot}}^{\mathrm{eff}}/\mathrm{NEP}_{\mathrm{ph}}$	1.40	1.41
$\mathrm{NEP}_\mathrm{tot}^\mathrm{eff}/\mathrm{NEP}_\mathrm{fund}$	1.07	1.10
$\rm NET_{CMB}^{\rm eff} \ [\mu K_{CMB} \ s^{1/2}]$	200	250

 $T_{c} = | K, T = 0.1K$ evaluated at | Hz $\rightarrow \ell = |00 \text{ at } |^{\circ}/\text{s}$ $\Delta \nu / \nu = 0.3$ $T_{\text{load}} = |5 \text{ K}$ $\eta_{\text{opt}} = 0.26, 0.40$ $P_{\text{opt}} = |.9, 3.9 \text{ pW}$

Yields very competitive	Quantity	100 GHz	$150 \mathrm{~GHz}$
expected sensitivities	$\overline{\mathrm{NEP}_{\mathrm{ph}} \; [\mathrm{aW} \; \mathrm{Hz}^{-1/2}]}$	21	38
o f op sky consitivitios:	$NEP_r [aW Hz^{-1/2}]$	17	30
c.f on-sky sensitivities:	$NEP_{amp} \left[aW Hz^{-1/2} \right]$	2	4
BICEP2/Keck Array: 400 µK _{CMB} s ^{1/2}	$\text{NEP}_{\text{TLS}} [\text{aW Hz}^{-1/2}]$	9	20
SPTpol: 500 μK _{CMB} s ^{1/2}	$\operatorname{NEP}_{\mathrm{fund}} [\mathrm{aW} \mathrm{Hz}^{-1/2}]$	27	48
• • • • • • • • • • • • • • • • • • • •	$NEP_{tot} [aW Hz^{-1/2}]$	28	52
POLARBEAR: 550 µK _{CMB} s ^{1/2}	$\text{NEP}_{\text{tot}}^{\text{eff}} [\text{aW Hz}^{-1/2}]$	29	53
ACTPol: 330 μK _{CMB} s ^{1/2}	$\mathrm{NEP}_{\mathrm{tot}}^{\mathrm{eff}}/\mathrm{NEP}_{\mathrm{ph}}$	1.40	1.41
Substantial headroom for	$\mathrm{NEP}_{\mathrm{tot}}^{\mathrm{eff}}/\mathrm{NEP}_{\mathrm{fund}}$	1.07	1.10
real-world degradations	$\mathrm{NET}_{\mathrm{CMB}}^{\mathrm{eff}} \left[\mu \mathrm{K}_{\mathrm{CMB}} \mathrm{\ s}^{1/2} \right]$	200	250
0			

 $T_{c} = I \text{ K}, T = 0.1\text{ K}$ evaluated at 1 Hz $\rightarrow \ell = 100 \text{ at } 1^{\circ}\text{/s}$ $\Delta \nu / \nu = 0.3$ $T_{load} = 15 \text{ K}$ $\eta_{opt} = 0.26, 0.40$ $P_{opt} = 1.9, 3.9 \text{ pW}$

Yields very competitive	Quantity	100 GHz	$150 \mathrm{GHz}$
expected sensitivities	$\operatorname{NEP_{ph}}\left[\mathrm{aW}\ \mathrm{Hz}^{-1/2}\right]$	21	38
•	$NEP_r [aW Hz^{-1/2}]$	17	30
c.f on-sky sensitivities:	$NEP_{amp} \left[aW Hz^{-1/2} \right]$	2	4
BICEP2/Keck Array: 400 µK _{CMB} s ^{1/2}	$\text{NEP}_{\text{TLS}} \left[\text{aW Hz}^{-1/2} \right]$	9	20
SPTpol: 500 μK _{CMB} s ^{1/2}	$\operatorname{NEP}_{\mathrm{fund}} [\mathrm{aW} \mathrm{Hz}^{-1/2}]$	27	48
	$\text{NEP}_{\text{tot}} [\text{aW Hz}^{-1/2}]$	28	52
POLARBEAR: 550 µK _{CMB} s ^{1/2}	$\mathrm{NEP}_{\mathrm{tot}}^{\mathrm{eff}} [\mathrm{aW} \ \mathrm{Hz}^{-1/2}]$	29	53
ACTPol: 330 μK _{CMB} s ^{1/2}	$\operatorname{NEP}_{\operatorname{tot}}^{\operatorname{eff}}/\operatorname{NEP}_{\operatorname{ph}}$	1.40	1.41
Substantial headroom for	$\mathrm{NEP}_{\mathrm{tot}}^{\mathrm{eff}}/\mathrm{NEP}_{\mathrm{fund}}$	1.07	1.10
real-world degradations	$\rm NET_{CMB}^{\rm eff} \ [\mu K_{CMB} \ s^{1/2}]$	200	250
0			

Some other aspects of design:

capacitor area ~ 2 mm² >> A_{feed} = 44 mm² assumed inductor length ~ 7 mm, inductor volume ~ 150 μ m³ qp density ~ 2000 μ m⁻³ >> "irreducible qp density" ~ 100 μ m⁻³ $\beta \approx 55$; Q_i ~ 70000, dominated by optical load $T_{c} = | K, T = 0.1K$ evaluated at | Hz $\rightarrow \ell = 100 \text{ at } 1^{\circ}/\text{s}$ $\Delta \nu / \nu = 0.3$ $T_{\text{load}} = 15 \text{ K}$ $\eta_{\text{opt}} = 0.26, 0.40$ $P_{\text{opt}} = 1.9, 3.9 \text{ pW}$

Yields very competitive Quantity 100 GHz 150 GHz expected sensitivities NEP _{ph} [aW Hz ^{-1/2}] 21 38 c.f on-sky sensitivities: NEP _r [aW Hz ^{-1/2}] 17 30 BICEP2/Keck Array: 400 μ K _{CMB} s ^{1/2} NEP _{rLS} [aW Hz ^{-1/2}] 2 4 SPTpol: 500 μ K _{CMB} s ^{1/2} NEP _{fund} [aW Hz ^{-1/2}] 27 48
c.f on-sky sensitivities:NEP _r [aW Hz ^{-1/2}]1730BICEP2/Keck Array: 400 μ K _{CMB} s ^{1/2} NEP _{amp} [aW Hz ^{-1/2}]24SPTpol: 500 μ K _{CMB} s ^{1/2} NEP _{TLS} [aW Hz ^{-1/2}]920NEP _{fund} [aW Hz ^{-1/2}]2748
c.f on-sky sensitivities:NEP _r [aW Hz ^{-1/2}]1730BICEP2/Keck Array: 400 μ K _{CMB} s ^{1/2} NEP _{amp} [aW Hz ^{-1/2}]24SPTpol: 500 μ K _{CMB} s ^{1/2} NEP _{TLS} [aW Hz ^{-1/2}]920NEP _{fund} [aW Hz ^{-1/2}]2748
$\frac{\text{BICEP2/Keck Array: 400 } \mu \text{K}_{\text{CMB}} \text{s}^{1/2}}{\text{SPTpol: 500 } \mu \text{K}_{\text{CMB}} \text{s}^{1/2}} = \frac{12}{\text{NEP}_{\text{TLS}}} = \frac{12}{\text{NEP}_{\text{TLS}}} = \frac{12}{12} = \frac{12}{1$
SPTpol: 500 µK _{cm} s ^{1/2} $NEP_{fund} [aW Hz^{-1/2}] 27 48$
$NEP_{tot} [aW Hz^{-1/2}] = 28 \qquad 52$
POLARBEAR: 550 $\mu K_{CMB} s^{1/2}$ Interfect [arr Hz]2002NEP_{tot}^{eff} [aW Hz^{-1/2}]2953
ACTPol: 330 μ K _{CMB} s ^{1/2} NEP _{tot} /NEP _{ph} 1.40 1.41
Substantial headroom for $NEP_{tot}^{eff}/NEP_{fund}$ 1.07 1.10
real-world degradations $\operatorname{NET_{CMB}^{eff}} [\mu K_{CMB} s^{1/2}] = 200 = 250$

Some other aspects of design:

capacitor area ~ 2 mm² >> A_{feed} = 44 mm² assumed

inductor length ~ 7 mm, inductor volume ~ $150 \ \mu m^3$

qp density ~ 2000 μ m⁻³ >> "irreducible qp density" ~ 100 μ m⁻³

 $\beta \approx 55; Q_i \sim 70000$, dominated by optical load

Design is scalable over range 45-420 GHz ($T_c = 0.52K$ for 45 GHz)

 $T_{c} = I \text{ K}, T = 0.1\text{ K}$ evaluated at 1 Hz $\rightarrow \ell = 100 \text{ at } 1^{\circ}/\text{s}$ $\Delta \nu / \nu = 0.3$ $T_{load} = 15 \text{ K}$ $\eta_{opt} = 0.26, 0.40$ $P_{opt} = 1.9, 3.9 \text{ pW}$

Assumes TiN obeys Mattis-Bardeen; known to be not true

But TiN responsivity seems to decrease less quickly with increasing P_{opt} than expected (or even increase!); our calculations are conservative Need to add empirical model for TiN responsivity

Assumes TiN obeys Mattis-Bardeen; known to be not true

But TiN responsivity seems to decrease less quickly with increasing P_{opt} than expected (or even increase!); our calculations are conservative Need to add empirical model for TiN responsivity

Assumes reasonable uniformity, behavior of TiN

Try other high-resistivity materials if a problem

Assumes TiN obeys Mattis-Bardeen; known to be not true

But TiN responsivity seems to decrease less quickly with increasing P_{opt} than expected (or even increase!); our calculations are conservative Need to add empirical model for TiN responsivity

Assumes reasonable uniformity, behavior of TiN

Try other high-resistivity materials if a problem

Assumes bulk material $\eta_{\rm Ph}$

Suspend inductor/mm-wave coupler on membrane if problematic

Assumes TiN obeys Mattis-Bardeen; known to be not true

But TiN responsivity seems to decrease less quickly with increasing P_{opt} than expected (or even increase!); our calculations are conservative Need to add empirical model for TiN responsivity

Assumes reasonable uniformity, behavior of TiN

Try other high-resistivity materials if a problem

Assumes bulk material $\eta_{\rm Ph}$

Suspend inductor/mm-wave coupler on membrane if problematic

Assumes TLS noise scales from Mazin et al 2010 a-Si:H

Such low loss tangent a-Si:H not demonstrated at JPL

But crystalline silicon tests show comparable or better (x10) loss tangent, can integrate into design if necessary

Assumes TiN obeys Mattis-Bardeen; known to be not true

But TiN responsivity seems to decrease less quickly with increasing P_{opt} than expected (or even increase!); our calculations are conservative

Need to add empirical model for TiN responsivity

Assumes reasonable uniformity, behavior of TiN

Try other high-resistivity materials if a problem

Assumes bulk material $\eta_{\rm Ph}$

Suspend inductor/mm-wave coupler on membrane if problematic

Assumes TLS noise scales from Mazin et al 2010 a-Si:H

Such low loss tangent a-Si:H not demonstrated at JPL

But crystalline silicon tests show comparable or better (x10) loss tangent, can integrate into design if necessary

Pread generation of qps not included

P_{read} = -90 dBm (= 1 pW) assumed; heating effects not usually seen at this low power (e.g., deVissers et al 2010, Hubmayr et al 2015)

Need to incorporate in modeling

CMB-S4 detectors need to be highly multiplexable and amenable to good polarization systematics control

CMB-S4 detectors need to be highly multiplexable and amenable to good polarization systematics control

Many different optical reception elements capable of microstrip coupling have demonstrated excellent systematics control

CMB-S4 detectors need to be highly multiplexable and amenable to good polarization systematics control

Many different optical reception elements capable of microstrip coupling have demonstrated excellent systematics control

We have a well-analyzed design for TiN KIDs that Provides microstrip coupling Will be multiplexable at N_{mux} ~ 1000 for approach \$1/detector Promises fundamental-noise limited performance

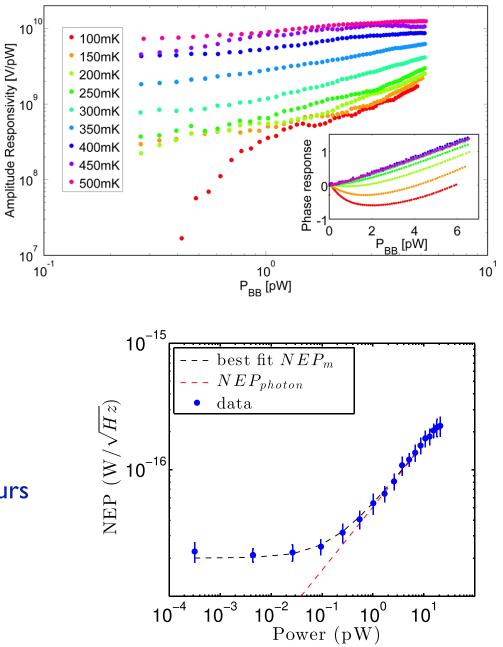
CMB-S4 detectors need to be highly multiplexable and amenable to good polarization systematics control

Many different optical reception elements capable of microstrip coupling have demonstrated excellent systematics control

We have a well-analyzed design for TiN KIDs that Provides microstrip coupling Will be multiplexable at N_{mux} ~ 1000 for approach \$1/detector Promises fundamental-noise limited performance

Plans

Mask in hand; will make first pass at fabricating this FY on JPL R&TD (seed) funds DOE detector R&D proposal submitted Also working on crystalline silicon capacitors (and microstrip) as backup for a-Si:H


Optical Power Density and Responsivity

Bueno et al 2014

Ignore TLS-dominated phase response Amplitude response increases with load rather than decreasing as $1/\sqrt{P_{opt}}$ as expected from M-B This would improve margin relative to amplifier and TLS noise! Strange discrepancy between optical and electrical NEP observed

Hubmayr et al 2015

-97 dBm < P_{read} < -87 dBm, still linear P_{res} comparable to our design $V_{inductor} = 86 \ \mu m^3$, only 2x smaller than ours Shows photon noise limited behavior for $P_{opt} > 1 \ pW$ Measured at 1.2THz, so NEP_{rec} negligible

Optimization Detail

Table 2: Parameters of KID design.

External (fixed) parameters at left, optimized parameters and parameters derived from them at right. Parameters not defined in the text: A_{feed} is the assumed area of the feed and corresponds to $2.2 f \lambda$ at 150 GHz and $1.3 f \lambda$ at 90 GHz for f/# = 1.5. These numbes are typical of current systems (e.g., Keck Array [24], SPTpol [64, 32]); $A_L = \ell_L w$; $V = A_L t$; $A_C = \ell_C^2$; $A_{KID} = A_L + A_C$; $L = \mu_0 \lambda_{pen} \ell_L/w$; $C = \epsilon_d \epsilon_0 \ell_c^2/t_d$ where $\epsilon_d = 12$ is the dielectric constant of a-Si:H; E = electric field in capacitor; $\ell_{coupler} =$ length of inductive coupler to feedline.

Band-Independent External Parameters

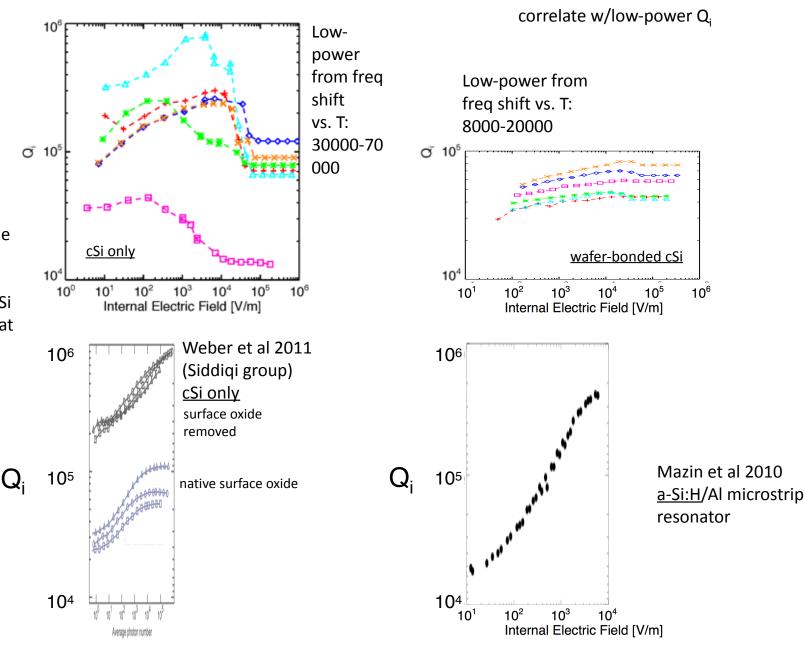
I	
Quantity	Value
T_c	1.0 K
2Δ	$300 \ \mu eV$
$2\Delta/h$	73 GHz
N_0	$3.5 \times 10^{10} \ \mu m^{-3} \ eV^{-1}$
R	$100 \ \mu m^3 \ s^{-1}$
$ au_0$	$100 \ \mu s$
T	0.1 K
t_d	400 nm
T_N	4.0 K
P_{read}	1.0 pW
J^*	$6.0 \text{ mA } \mu \text{m}^{-2}$
$S_{\delta f/f}^{TLS}$	see text
f_a	1 Hz

Band-Dependent External Parameters

Quantity	90 GHz	$150~\mathrm{GHz}$
$\Delta \nu [{\rm GHz}]$	35	47
T_L [K]	15	15
$A_{feed} \ [mm^2]$	44.4	44.4
η_{opt}	0.26	0.40
P_{opt}	1.9	3.9
η_{ph}	0.81	0.57

Optimized Parameters				
Quantity	90 GHz	$150 \mathrm{~GHz}$		
Varied Parameters	-			
$\ell_L [{\rm mm}]$	6.3	7.4		
w [μ m]	1.01	1.04		
$t [\mathrm{nm}]$		20		
Derived Geometrical Param	neters			
$\ell_C [\mathrm{mm}]$	1.42	1.13		
$A_L \; [\mathrm{mm}^2]$	0.006	0.008		
$V \ [\mu m^3]$	128	154		
$A_C \; [\mathrm{mm}^2]$	2.00	1.28		
$\underline{A_{feed}/(A_{feed}+A_{KID})}$	0.96	0.97		
Derived RF Parameters				
λ_{pen} [μ m]		30		
$L \left[\mu \mathrm{H} \right]$	0.24	0.27		
$C [\mathrm{pF}]$	133	85		
$f_r [\mathrm{MHz}]$	28	33		
$Q_i \ [10^4]$	8.3	6.8		
$J_{read} \left[mA \ \mu m^{-2} \right]$	2.2	1.7		
$\frac{E [\text{kV/m}]}{S_{\delta f/f}^{TLS} [10^{-19} \text{Hz}^{-1}]}$	4.7	4.9		
	2.1	3.1		
$\frac{\ell_{coupler} [\mathrm{mm}]}{2}$	3.4	3.7		
Derived Quasiparticle Para				
$n_{qp} \ [\mu m^{-3}]$	1850	2000		
$\frac{\tau_{dyn} \ [\mu s]}{\Gamma_{dyn} \ [\mu s]}$	2.6	2.4		
Derived Responsivity	0.01	0.70		
η_{abs}	0.81	0.78		
$\frac{d(\delta f/f)/dP_{opt} \left[10^6 \text{ W}^{-1}\right]}{\text{Derived Constitution}}$	95	50		
Derived Sensitivity	01			
$\frac{\text{NEP}_{\text{ph}} [\text{aW Hz}^{-1/2}]}{\text{NEP}_{\text{r}} [\text{aW Hz}^{-1/2}]}$	21	38 20		
	17	30		
$NEP_{amp} [aW Hz^{-1/2}]$	2	4		
$\frac{\text{NEP}_{\text{TLS}} \left[\text{aW Hz}^{-1/2}\right]}{\text{NEP}}$	9	20		
$\frac{\text{NEP}_{\text{fund}} \left[\text{aW Hz}^{-1/2}\right]}{\text{NEP}} \int \frac{1}{2} $	27	48		
$\frac{\text{NEP}_{\text{tot}}}{\text{[aW Hz^{-1/2]}]}}$	28	52		
NEP ^{eff} [aW Hz ^{-1/2}]	29	53		
NEP_{tot}^{eff}/NEP_{ph}	1.40	1.41		
$\frac{\text{NEP}_{\text{tot}}^{\text{eff}}/\text{NEP}_{\text{fund}}}{4}$	1.07	1.10		
$\frac{\text{NET}_{\text{CMB}}^{\text{eff}} \left[\mu \text{K}_{\text{CMB}} \text{ sec}^{1/2} \right]}{2}$	200	250		

Crystalline Si and a-Si:H Loss Tangent Comparisons


Virgin cSi results comparable w/Siddiqi gp. (though not precisely)

Currently, wafer-bonded cSi shows poorer high-field Q_i than a-Si:H, comparable low-field Q_i

Wafer-bonded cSi comparable to virgin cSi w/native oxide

a-Si:H comparable to virgin cSi at high field, degrades more at low field

MUSIC a-SiN_x had high-field $Q_i \approx 10000$ low-field $Q_i \approx 1000$, all would be vast improvements

Next steps:

noise measurements to correlate TLS

mm-wave loss measurements to

noise w/high-field Q_i