Future Intensity Mapping Surveys

Laura Newburgh

Dunlap Institute

@ CPAD

October 2016

Photo credit: K Vanderlinde

Past accelerated expansion: Inflation via non-gaussianity/ scale dependent bias

Recent accelerated expansion: Dark Energy

Lots of interesting 'side' science with neutrinos, dark matter, modified gravity

But, high redshift measurements of galaxies are ... not easy

The scale of interest is Large...

So we don't need to resolve individual galaxies

150 Mpc radius

DO need:

- Traces (dark)matterdistribution
- Redshift information (time)

Hydrogen Intensity Mapping

Same Galaxy — Neutral Hydrogen in un-ionized bubbles, supported within galaxies

Why do 21cm intensity mapping?

'Future' Intensity Mapping Surveys

Walking the line between 'current' and 'Future' 21cm intensity mapping experiments

Current state-of-the-art 21cm measurement

The Canadian Hydrogen Intensity Mapping Experiment (CHIME)

- 4 cylinders: 20m x 100m —— Chosen for BAO scales
- 1024 dual-polarization feeds
- 400-800MHz Redshifts 0.8 2.5
- Constructed, currently being instrumented
- 5 year survey

The Canadian Hydrogen Intensity Mapping Experiment (CHIME)

- 4 cylinders: 20m x 100m
- 1024 dual-polarization feeds
- 400-800MHz
- Constructed, instrumented this year Full CHIME

Pathfinder on sky

Preliminary map

x 1024 frequencies x 2 years

More 'Future' 21cm Intensity Mapping Surveys

Other intensity mapping lines (currently focused on star formation)

COPSS @ SZA/Ovro
CO (1-0) intensity mapping
27-35 GHz (z~2.3-3.3)
2σ detection (Keating et al 2015)

ARGUS @ GBT High-redshift CO 85-115 GHz (z~1-3)

Other intensity mapping lines

SphereX satellite mission

Towards 'all the modes': higher redshift

Towards 'all the modes': higher redshift

How do we get there with 21cm?

Also our biggest challenge

Biggest technical challenge

(that we know about with no detection yet)

Higher redshift ⇔ more modes:

- Longer baselines
 require better technology
 for transmission from dish to correlator (stable,
 not lossy over many km)
- more elements
 ⇔ analysis will require high degree of per-dish repeatability