


Challenges at HL-LHC

- HL-LHC plans 5e34/cmé?/s
instantaneous luminosity
and 3000/fb integrated
- High pile-up conditions (200 PU) -

- High radiation dose
(150Mrad, 107%n/cm?)

- Resolution of current endcap EE
iIncreases to O(10%)
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°In 2015 CMS chose a silicon based calorimeter

=

The HGCal Endcap Design
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- 20 years of experience from tracker and pixel

IIIIi! E -

Hitnm e *Radiation effects are well

i 'G????uulumu. _ understood and manageable with

- -30C temperature operations
Il i , -High granularity and fast timing

) i{‘% Py capability help mitigate pile-up

T 2 ”""”"”!!!!!!!_!! 44{(| Electronics in 130/65nm allows low

noise and low power readout even
for large dynamic range

- Key parameters:

N brass 5

o Construction:

- Modules built from W/Cu
baseplate,hexagonal sensors

and readout PCB » 600 m? of silicon
- Cassettes built from modules - 6M readout channels, 0.5-1 cm? area cells
and Cu cooling plate - 21660 modules (8" or 2x6™ sensors)

- Cassettes inserted into absorber - 115kW power at end of life



Expected Performance
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*Electromagnetic showers narrow -<Energy resolution EM
- pile-up rejection - stochastic term ~20%
- good separation for particle flow - target constant term < 1%
approach

- minimize thickness in design
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Silicon Sensor R&D

Hexagonal sensors from 6” vs 8” wafers
8" wafers offer lower costs

Inter cell distance (20um - 80um)
The larger the distance the smaller the inter-cell capacitance
The smaller the distance the larger the break down voltage
p-type vs n-type

n-type are cheaper but at highest fluences less radiation
tolerant

Active layer thickness (100um - 300um)

at high fluences thinner ~100um sensors give more absolute
collected charge than 200 or 300um ones

Comparison of performance of sensors from
various vendors
HPK: 6" n-type fabricated and tested, p-type to be ordered
Infineon and HPK: 8" p-type are being fabricated
Novati: half of 6" p-type from 8" wafer being tested




HPK Sensor Testing at Fe

Prototype 6” n-type sensors from HPK

Testing with custom probe card, contacting all
channels with spring loaded pins

50 tested sensors showed expected performance
and excellent quality: no breakdown till 900V
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Irradiation Studles of Si Diodes

. Typ es Of d io d es 1MeV neutron equivalent in Silicon, HGC, 3000fb A

le+17

- Silicon growth technique: 250 ey e
dd-FZ: float zone deep diffusion 200 | <
Epi: epitaxial layer 320 € j55 HeHiT s g
- n-on-p (p type), p-on-n (n-type) j:z * 100 fe+1d §;
- Active thickness: 50um - 320um 50 1e+13
+ Size: dSGmm X dSmm 0 1e+12
-550 -500 -450 -400 -350 -300
*Goal: investigate performance  ccwammar  Ziem
after neutron irradiation up to 1.5e16 n/cm?
List of sensors and status: Thickness (um)
Fluence n/cm2 Float zone Epitaxial
200 120 100 50

4.00E+014 1 n-on-p, 1 p-on-n

1 n-on-p, 1 p-on-n

1.60E+016

1 n-on-p, 1 p-on-n 2 n-on-p, 2 p-on-n
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Radiation Hardness Results

@C and annealing of lomin@@

. —|Ar=o0,V |
leakage current at 800V
102 leakage current at 600V
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- Leakage current normalized by the volume of
the diode is proportional to the fluence, even
at high fluences

- The alpha measured at 800V is equal to the
value measured during the CMS tracker
upgrade with proton irradiation, 5.3x10-17 A/
cm3 in both cases (scaled to +20C) and
consistent with Moll’s thesis alpha value

Signal, ke

Signal injected with IR laser, confirmed with °°Sr

Signal from CCE, TCT-IR-1063-250ps, T:-20°C, annealing 10min@60°C

v dd-FZ N type 600V
. dd-FZ P type 600V
. Epi 100P 600V

dd-FZ320N (21700 e)

dd-FZ320P (21200 ¢)

dd-FZ200N (16600 e)

dd-FZ200P (15300 e)

.......

dd-FZ120N (10800 e)

dd-FZ120P (9700 e)
Epi

O i b
-
- -
- -

L1 ols

16
Flubice, nicm*2

P type dd-FZ diodes of 320um thickness
showed significantly lower signals than N
type diodes (under investigation), while
similar for other thicknesses

Signals from Epi (100um) diodes are
larger after radiation than from dd-FZ
(120um) diodes
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Timing Studies of Diodes at CERN

Goal: to measure intrinsic
timing capabilities of silicon
detectors for EM showers

Study time resolution as a

function of signal amplitude,

active thickness and fluence

Used Cividec amplifiers and
Caen V1742 fast (5GHz)
digitizer with >500MHz
bandwidth

Experimental setup for testing n

n-type diodes

Non-irradiated

e

~1.36

200um

~1.48cm

120 um

AN

~2.6 X,
Cold box (-25°C)




Timing Results

- Time resolution is measured by comparing time of signal
arrival from two Si diodes, event by event

*Time resolution is determined by S/N
- Dependence on sensor thickness is via S/N
- Dependence on fluence is also via S/N

*Timing resolution is < 20ps for S/N > 50

- Application of timing capabilities of silicon sensors may
resolve showers in time and help mitigate pile-up at HL-LHC

*~10ps resolution for EM shower with 50ps cell resolution
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Module Design and Construction

*The electromagnetic part of HGCal
requires compact construction to
keep shower size small

*Module design is being optimized
- to obtain low profile
* requires as thin as possible electronics design
- wire-bonding sensor cells to PCB requires

- meeting tight gluing tolerances to ensure
the PCB is flat, horizontal (~100um) and
well supported by the glue

- good alignment (~100um) of sensor and
PCB layers

- may require deep access wire-bonding
machine (~1mm deep)
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Module Assembly

Step 28Glue on gold plated kapton Step 3: Glue on silicon sensor
Attachihg sensor Aﬁ’achmg PCB |

Step 1 Glue on W/Cu baseplate
Attachlng kapton

Zoltan Gecse 12



Wire Bonding

Finished module with SKIROC for

~ 700 wire bonds on
testbeam 3 P

a single module!

),.‘ ‘

SKIROC| | |L2"
FECHIP %

Signals Guard Ring
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Double-layer Module Prototype

*In parallel, a double-layer module structure has been
explored
- bottom layer is a passive PCB connecting silicon pads to a connector
- top layer carries all electronics, SKIROC chips, etc...
- allows replacement of electronics and reuse of the sensors during R&D
- Successfully operated in test beams
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Automated Assembly of Modules

- Setting up Gantry machine Clamping tool
for automated assembly of

Sensor
modules holding tray
*Reproducible results
*High rate and volume of Baseplate on
carrier tray
assembly

*Will be tested for the Assembled
production of the test beam ,o4yie cures

prototype calorimeter under clamping
tool
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Overview of Beam Tests

*Goals -
- verify functionality of design with a full depth but m
narrow calorimeter prototype ENAL March 2016
- performance studies: signal to noise, timing,
energy and position resolutions FNAL : W e

Several beam tests at FNAL and CERN a6 15 Juy2016
- FNAL: 120GeV protons, 4-32GeV electrons/pions .
- CERN: 125GeV pions, 20-250 GeV electrons

-Each layer contains 1 sensor mounted
on a copper cooling plate
- 67, 200um active thickness, p-on-n,
1.1cm2 cell size
*Hanging file design for mechanical
structure

- Flexible insertion of absorbers and modules on
cooling plates

ERN 8 27 Aug 2016

manifold

&
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Cem Test Beam (27 Xo with 8 Layers)
m,a "‘L\'}: o
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Lead
Copper

CuWwW
Si + PCB



Calibration and Event Displays

*Muon beam used to calibrate sensors

- After pedestal and coherent noise subtraction
distribution of ADC counts is fit with a Landau
distribution convoluted with a Gaussian

-1 MIP ~ 17.9 ADC
*Detailed analyses of data ongoing

250GeV e

L1:51X0 L2:85X0 L3:119Xo L4:14.7Xo L5:17.2Xo L6:18.7Xo L7:21.1Xo, L8 :27.07Xo
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.‘ Readout
electronics
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Energy Depositions and MC Comparisons

500 CMS Preliminary HGC test beam, July 2016
- All layers have been calibrated .. - — & 32 eV
-Pedestals and noise subtracted . . v 1eGev
,‘a..sooz_ . e:BGeV
* Top plot shows energy § ©eaGev
deposited in each layer fou
- Shower max moves to higher depth ool ,
with increasing electron beam energy, — *f 4: - °° o o0 - .0 Py
as expected % Tz e L B
’ BOttom pIOt Shows tOtaI energy _ CMS Preliminary HGCAL test beam, July 2016
deposited in all layers as a | 0 —— a0 et b i
function of e- beam energy € s00f T L
2000 -
- Dependence is linear £ 1500 t
- Compared to Geant 4 simulation ot 01 T  [Simostaggered by 0.5 GeV it data
- Good agreement (~5%) observed i S e -
Beam Energy[GeV]



-CMS is preparing for a High Granularity Endcap calorimeter
largely based on silicon sensors, (600m? and 6M channels)

*First prototype HGCal sensors have been fabricated and
show excellent quality and expected performance

-comprehensive suite of studies is planned and well underway

*Radiation studies of silicon diodes show good radiation
hardness for entire lifetime of HL-LHC (3000fb-1)

*Good intrinsic timing resolution (<20ps at high enough S/N)
of silicon diodes has been measured. This can help mitigate
the effect of pileup and in localizing the primary vertex of the
event of interest.

- Construction of prototype modules has been successfully
demonstrated and work started on automated assembly

*Successfully constructed and operated a 16 layer EE
prototype in the test beam
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Additional Material




Front-end Electronics

Very stringent requirements for Front-End Electronics
« Large dynamic range 0.4 fC — 10 pC (15 bits)
noise < 2000 e- to keep MIP visibility for low thickness sensors
after 3000 fb-1

» Leakage current compensation
* Low power budget < 10 mW/channel

« Timing information 50 ps accuracy

« System on chip (digitization, processing), high speed readout (>Gb/s),
large buffers to accommodate 12.5us latency of L1 trigger

» Preferably compatibility for positive and negative inputs.

« High radiation resistance (150 MRad, 107 n/cm?)

Zoltan Gecse




Strategy for FE Electronics

1) Modify existing CALICE chip to include most of the required functionalities
Exercise functionalities such as ToT, cross calibration ADC-ToT, fast timing...
Allows study of FE printed circuit board and module assembly ! !mega
Test beams 2016-2017

SKIROC2 -> SKIROC2-CMS 0.35 um AMS (non radhard)
faster shaper 25ns instead of 200 ns
sampling @ 40 MHz, depth 300 ns
ToT
TDC for ToA, 20 ps binning, 50 ps jitter
Received late June, under test (see next presentation)
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2) Submit Test Venhicles in 130 nm

TV1 received mid-September: analogue architecture, basellne + variants
TV2 to be submitted before end 2016: 8 channels, analogue+ADC+ToT+ Trigger

sSums

3) Submit first “complete” ASIC June 2017
(some digital functionalities may still be incomplete)

4) Two more iterations foreseen in the overall planning 16
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Test Beam DAQ
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Ethernet Switch

GBE

ZedBoard

—/
PC, X-DAQ

FPC cable to
SKIROC

H High Speed Serial |

2rvc 1omomse *In the ZedBoard: FPGA
and CPU running Linux
in a single CHIP

- Allows easy transfer of
data from FPGAs to
Computers




