#### **CMS Endcap Calorimeter Upgrade, HGCal**



Zoltan Gecse Fermilab On behalf of CMS Collaboration October 9, 2016, CPAD

### Challenges at HL-LHC

Dose [Gy]

# • HL-LHC plans 5e34/cm<sup>2</sup>/s instantaneous luminosity and 3000/fb integrated

- High pile-up conditions (200 PU)
- High radiation dose (150Mrad, 10<sup>16</sup>n/cm<sup>2</sup>)
- Resolution of current endcap EE increases to O(10%)



#### Endcap Calorimeter needs replacement

![](_page_1_Figure_7.jpeg)

![](_page_1_Figure_8.jpeg)

# The HGCal Endcap Design

![](_page_2_Picture_1.jpeg)

### Construction:

- Modules built from W/Cu baseplate, hexagonal sensors and readout PCB
- Cassettes built from modules and Cu cooling plate

In 2015 CMS chose a silicon based calorimeter

20 years of experience from tracker and pixel

- Radiation effects are well understood and manageable with -30C temperature operations
- High granularity and fast timing capability help mitigate pile-up
- Electronics in 130/65nm allows low noise and low power readout even for large dynamic range

### • Key parameters:

- 600 m<sup>2</sup> of silicon
- 6M readout channels, 0.5-1 cm<sup>2</sup> area cells
- 21660 modules (8" or 2x6" sensors)
- Cassettes inserted into absorber
   115kW power at end of life

### **Expected Performance**

![](_page_3_Figure_1.jpeg)

minimize thickness in design

## Silicon Sensor R&D

#### Hexagonal sensors from 6" vs 8" wafers

8" wafers offer lower costs

### Inter cell distance (20um - 80um)

- The larger the distance the smaller the inter-cell capacitance
- The smaller the distance the larger the break down voltage

### p-type vs n-type

 n-type are cheaper but at highest fluences less radiation tolerant

### Active layer thickness (100um - 300um)

 at high fluences thinner ~100um sensors give more absolute collected charge than 200 or 300um ones

# Comparison of performance of sensors from various vendors

- HPK: 6" n-type fabricated and tested, p-type to be ordered
- Infineon and HPK: 8" p-type are being fabricated
- Novati: half of 6" p-type from 8" wafer being tested

![](_page_4_Picture_14.jpeg)

![](_page_4_Picture_15.jpeg)

![](_page_4_Figure_16.jpeg)

### HPK Sensor Testing at Fermilab

#### Prototype 6" n-type sensors from HPK

- Testing with custom probe card, contacting all channels with spring loaded pins
- 50 tested sensors showed expected performance and excellent quality: no breakdown till 900V

![](_page_5_Picture_4.jpeg)

![](_page_5_Figure_5.jpeg)

### Irradiation Studies of Si Diodes

#### Types of diodes

- Silicon growth technique: dd-FZ: float zone deep diffusion Epi: epitaxial layer
- n-on-p (p type), p-on-n (n-type)
- Active thickness: 50um 320um
- Size: 5mm x 5mm

#### • Goal: investigate performance CMS FLUKA geometry v.3.720 after neutron irradiation up to 1.5e16 n/cm<sup>2</sup>

List of sensors and status:

| Fluence n/cm2 | Float zone         |                    |                    | Epitaxial |                 |
|---------------|--------------------|--------------------|--------------------|-----------|-----------------|
|               | 320                | 200                | 120                | 100       | 50              |
| 4.00E+014     | 1 n-on-p, 1 p-on-n |                    |                    |           |                 |
| 6.00E+014     | 2 n-on-p, 2 p-on-n |                    |                    |           |                 |
| 9.00E+014     | 1 n-on-p, 1 p-on-n |                    |                    |           |                 |
| 1.50E+015     |                    | 1 n-on-p, 1 p-on-n |                    |           |                 |
| 2.50E+015     |                    | 2 n-on-p, 2 p-on-n |                    |           |                 |
| 4.00E+015     |                    | 1 n-on-p, 1 p-on-n |                    |           |                 |
| 6.25E+015     |                    |                    | 2 n-on-p, 2 p-on-n | 2 n-on-p  |                 |
| 1.00E+016     |                    |                    | 1 n-on-p, 1 p-on-n | 2 n-on-p  | 2 n-on-p, 2 p-o |
| 1 60E+016     |                    |                    | 1 n.on.n 1 n.on.n  |           | 2 n-on-n 2 n-o  |

Thickness (um)

![](_page_6_Figure_10.jpeg)

### **Radiation Hardness Results**

![](_page_7_Figure_1.jpeg)

#### Signal injected with IR laser, confirmed with <sup>90</sup>Sr

![](_page_7_Figure_3.jpeg)

- Leakage current normalized by the volume of the diode is proportional to the fluence, even at high fluences
- The alpha measured at 800V is equal to the value measured during the CMS tracker upgrade with proton irradiation, 5.3x10-17 A/ cm3 in both cases (scaled to +20C) and consistent with Moll's thesis alpha value
- P type dd-FZ diodes of 320um thickness showed significantly lower signals than N type diodes (under investigation), while similar for other thicknesses
- Signals from Epi (100um) diodes are larger after radiation than from dd-FZ (120um) diodes

## Timing Studies of Diodes at CERN

- Goal: to measure intrinsic timing capabilities of silicon detectors for EM showers
- Study time resolution as a function of signal amplitude, active thickness and fluence
- Used Cividec amplifiers and Caen V1742 fast (5GHz) digitizer with >500MHz bandwidth

![](_page_8_Picture_4.jpeg)

![](_page_8_Figure_5.jpeg)

#### Cold box (-25°C)

![](_page_8_Picture_7.jpeg)

## **Timing Results**

 Time resolution is measured by comparing time of signal arrival from two Si diodes, event by event

#### Time resolution is determined by S/N

- Dependence on sensor thickness is via S/N
- Dependence on fluence is also via S/N
- Timing resolution is < 20ps for S/N > 50
- Application of timing capabilities of silicon sensors may resolve showers in time and help mitigate pile-up at HL-LHC
- ~10ps resolution for EM shower with 50ps cell resolution

![](_page_9_Figure_8.jpeg)

### Module Design and Construction

- The electromagnetic part of HGCal requires compact construction to keep shower size small
- Module design is being optimized
  - to obtain low profile
    - requires as thin as possible electronics design
  - wire-bonding sensor cells to PCB requires
    - meeting tight gluing tolerances to ensure the PCB is flat, horizontal (~100um) and well supported by the glue
    - good alignment (~100um) of sensor and PCB layers
    - may require deep access wire-bonding machine (~1mm deep)

![](_page_10_Figure_9.jpeg)

### Module Assembly

![](_page_11_Figure_1.jpeg)

### Wire Bonding

![](_page_12_Figure_1.jpeg)

#### ~ 700 wire bonds on a single module!

![](_page_12_Picture_3.jpeg)

![](_page_12_Picture_4.jpeg)

### Double-layer Module Prototype

- In parallel, a double-layer module structure has been explored
  - bottom layer is a passive PCB connecting silicon pads to a connector
  - top layer carries all electronics, SKIROC chips, etc...
  - allows replacement of electronics and reuse of the sensors during R&D
  - Successfully operated in test beams

![](_page_13_Picture_6.jpeg)

![](_page_13_Picture_7.jpeg)

### Automated Assembly of Modules

- Setting up Gantry machine for automated assembly of modules
- Reproducible results
- High rate and volume of assembly
- Will be tested for the production of the test beam prototype calorimeter

Clamping tool Sensor holding tray Baseplate on carrier tray Assembled module cures under clamping tool

### **Overview of Beam Tests**

| Goals                                                                                                               |            |                                    |               |            |
|---------------------------------------------------------------------------------------------------------------------|------------|------------------------------------|---------------|------------|
| <ul> <li>verify functionality of design with a full depth but</li> </ul>                                            | Laboratory | Layers                             | Rad<br>length | Date       |
| narrow calorimeter prototype                                                                                        | FNAL       | 1                                  | 6             | March 2016 |
| <ul> <li>performance studies: signal to noise, timing,<br/>energy and position resolutions</li> </ul>               | FNAL       | 4                                  | 12            | May 2016   |
| Several beam tests at FNAL and CERN                                                                                 | FNAL       | 16                                 | 15            | July 2016  |
| <ul> <li>FNAL: 120GeV protons, 4-32GeV electrons/pions</li> <li>CERN: 125GeV pions, 20-250 GeV electrons</li> </ul> | CERN       | 8                                  | 27            | Aug 2016   |
| Each layer contains 1 sensor mounted                                                                                |            |                                    |               |            |
| on a copper cooling plate                                                                                           |            | Electronics Cra<br>for carrier car | nte<br>ds     |            |
| <ul> <li>6", 200um active thickness, p-on-n,</li> <li>1.1cm2 cell size</li> </ul>                                   |            | with FMC-IO, a<br>ZedBoard         |               |            |
| Hanging file design for mechanical structure                                                                        |            |                                    |               |            |

Cooling wate

manifold

 Flexible insertion of absorbers and modules on cooling plates

### Cern Test Beam (27 X<sub>0</sub> with 8 Layers)

![](_page_16_Picture_1.jpeg)

## Calibration and Event Displays

#### Muon beam used to calibrate sensors

- After pedestal and coherent noise subtraction distribution of ADC counts is fit with a Landau distribution convoluted with a Gaussian
- 1 MIP ~ 17.9 ADC

#### Detailed analyses of data ongoing

![](_page_17_Figure_5.jpeg)

L1:5.1X L2:8.5X L3:11.9X<sub>0</sub> L4:14.7X<sub>0</sub> L5:17.2X<sub>0</sub> L6:18.7X<sub>0</sub> L7:21.1X<sub>0</sub> L8:27.07X<sub>0</sub> MPV = 17.859284

~ 7.4

## Fermilab Test Beam (15 X<sub>0</sub> with 16 Layers)

![](_page_18_Picture_1.jpeg)

Zoltan Gecse

# **Energy Depositions and MC Comparisons**

- All layers have been calibrated
- Pedestals and noise subtracted
- Top plot shows energy deposited in each layer
  - Shower max moves to higher depth with increasing electron beam energy, as expected
- Bottom plot shows total energy deposited in all layers as a function of e<sup>-</sup> beam energy
  - Dependence is linear
  - Compared to Geant 4 simulation
  - Good agreement (~5%) observed

![](_page_19_Figure_9.jpeg)

![](_page_19_Figure_10.jpeg)

### Summary

- CMS is preparing for a High Granularity Endcap calorimeter largely based on silicon sensors, (600m<sup>2</sup> and 6M channels)
- First prototype HGCal sensors have been fabricated and show excellent quality and expected performance
  - comprehensive suite of studies is planned and well underway
- Radiation studies of silicon diodes show good radiation hardness for entire lifetime of HL-LHC (3000fb-1)
- Good intrinsic timing resolution (<20ps at high enough S/N) of silicon diodes has been measured. This can help mitigate the effect of pileup and in localizing the primary vertex of the event of interest.
- Construction of prototype modules has been successfully demonstrated and work started on automated assembly
- Successfully constructed and operated a 16 layer EE prototype in the test beam

### **Additional Material**

### **Front-end Electronics**

Very stringent requirements for Front-End Electronics

- Large dynamic range 0.4 fC 10 pC (15 bits) noise < 2000 e- to keep MIP visibility for low thickness sensors after 3000 fb-1
- Leakage current compensation
- Low power budget < 10 mW/channel</li>
- Timing information 50 ps accuracy
- System on chip (digitization, processing), high speed readout (>Gb/s), large buffers to accommodate 12.5µs latency of L1 trigger
- Preferably compatibility for positive and negative inputs.
- High radiation resistance (150 MRad, 10<sup>16</sup> n/cm<sup>2</sup>)

### Strategy for FE Electronics

 Modify existing CALICE chip to include most of the required functionalities Exercise functionalities such as ToT, cross calibration ADC-ToT, fast timing... Allows study of FE printed circuit board and module assembly Test beams 2016-2017

> SKIROC2 -> SKIROC2-CMS 0.35 µm AMS (non radhard) faster shaper 25ns instead of 200 ns sampling @ 40 MHz, depth 300 ns ToT TDC for ToA 20 ns binning 50 ns jitter

TDC for ToA, 20 ps binning, 50 ps jitter Received late June, under test (see next presentation)

#### 2) Submit Test Vehicles in 130 nm

TV1 received mid-September: analogue architecture, baseline + variants TV2 to be submitted before end 2016: 8 channels, analogue+ADC+ToT+ Trigger sums

#### 3) Submit first "complete" ASIC June 2017

(some digital functionalities may still be incomplete)

4) Two more iterations foreseen in the overall planning

![](_page_23_Picture_10.jpeg)

### Test Beam DAQ

![](_page_24_Figure_1.jpeg)