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Discovery of the Higgs Boson

The discovery of a SM-like Higgs boson during the LHC Run 1
was a ground-breaking event in physics history
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Discovery of the Higgs Boson

The discovery of a SM-like Higgs boson during the LHC Run 1
was a ground-breaking event in physics history
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“"Greetings Earth-people. We have been monitoring your progress.
Now that you have discovered the Higg’s boson you are qualified
to join the Federation of Advanced Civilisations.”



Higgs Summary

* Following its discovery, significant effort has been put into characterizing
the properties of the Higgs Boson

* Objectives:

— observe it in as many channels as possible to measure its properties

— check of the coupling structure of the SM

— interpret deviations of Higgs couplings as a sign of New physics
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What remains to be answered ?

What is the solution to the hierarchy problem ?
Are there exotic Higgs decays ?
Are there additional Higgs bosons ?
Does the Higgs interact with dark matter ?
Is the Higgs elementary or composite?
Higgs couplings to light particles (e.g. h = J/W+y)
Higgs coupling to top:
— known indirectly (gg—>h) or via difficult tth channel



The Energy Frontier

 Answers are being searched for at the Energy Frontier

LHC / HL-LHC Plan e{"iﬁt‘im
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Where are we now ?
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Higgs (re-)discovery: H->yy

The Higgs has been re-discovered in Run 2 at 13 TeV

Achieved similar precision to Run 1
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Also measuring fiducial cross section and diferential cross sections °



Higgs (re-)discovery: H->Z7

The Higgs has been re-discovered in Run 2 at 13 TeV

Achieved similar precision to Run 1
CMS-PAS-HIG-16-033 ATLAS —CONF-2016-079

Measurements compatible with SM
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Stress-testing the Higgs sector:

 Precision measurements

* Rare processes
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HL-LHC: the Higgs Factory

CMS TDR-15-002

19.7fb7 (8 TeV) + 5.1 fb' (7 TeV)
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Compared to a precision of ¥20% on Higgs boson couplings today, percent-
level precision can be reached for most coupling measurements.

HL-LHC provides access to rare processes (e.g. H->uu)

12



ATL-PHYS-PUB-2014-016 H |_- |_ H C P r()j ect | ONS | CMS TDR-15-002

CMS Projection

ATLAS SimUIation Preliminary lE);pec[:tecll urlmcell'tairIItiels orl1 o l;l |300]fb"alt E'=14ITeVISoer:ariol1
\s=14TeV: _[Ldt=300 b ; _[Ldt=3000 b Higgs boson couplings F— 3006"at /5= 14 TeV Scenario 2
K } :
H%uu (Comb.) KY l I 300 Ifb
(incl.) ! . [4-15]1%
RS Kz f ’
(ttH-like) E— Kq ; ,
Hott (VBF-like) Ko
H—ZZ (comb.) g™ = K
(VH-like) - ™ "‘
(tth-like) - p—— T —000 005 0i0 015
(VBF-like) : expected uncertainty
. WW(Q?F'WLG; ___________________________________________________________ ory CMS Projection
% Com . : b - T T ] T T T -l ] ] T T T T I T T T T I T T
.............................. E— N A X ertalnt E ted rtaint| —1 3000fb"at fs =14 TeV Scenario 1
(VBF-ike) s > Y Higgs boson couplings 1| 100m"at 2+ 14Ty e
(+1]) S I
(+0) ittt KY
el N— w [ 3000/fb | ¥
H—Zy (INC . ) < |——
Hoyy (comb.) g™ Ky [2-10]%
(VH-like) Ky
(ttH-like) — K
(VBF-like) mommmmmrr I e
(+1J.) mosssnsssssstasanssst —000 005 00 015
(+0]) jmmises i expected uncertainty

signal strength: Ap/p Scenario 2: Theory uncertainties scaled by 1/2,

I = 6/6gy other syst. uncertainties scaled by 1/vVL



Theoretical uncertainties

Important to continue decreasing the uncertainties including the theoretical
ones which are critical for estimating cross sections & acceptances

* Missing higher order QCD correction

* Electroweak corrections

* PDF uncertainties

SUSY Kanemura, Tsumurs, COMPOSITE HIGGS

Yagyu, Yokoya
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Stress-testing the Higgs sector:
* Precision measurements

* Rare processes
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Higgs Pair Production

* Challenging measurement!

 Directly probes the Higgs field potential
— Sensitive to the self-coupling A

 Small cross section, destructive interference with
box diagram

e Puts constraints on several new-physics scenarios

— Non-resonant: New/modified vertices Non-resonance search
0. , |
contributing to hh production ___hOnvSM

— Resonant: new narrow width particle
decaying into two SM Higgs

Resonance search

-h
New Physics A,/
000) ,vh -0
X e \\‘h

200 “h 6(pp > HH+X)=34fb @ 14 TeV
(Cgg 51~ 44 pb)

Interference




Higgs Pair Production

* ATLAS and CMS are exploring different production modes HH—bbt*t
(e.g. gg fusion, VBF, tthh) and decays HH—bbbb

 Experimental challenges: b-tagging, merged jets, tau- HH—bbyy
tagging, pileup mitigation, photon identification ttHHH, HH—bbbb

efficiencies, and mass resolutions
* Need to combine many final states to maximize the

sensitivity. CMS TDR-15-002
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H->pp

e Averyrare decay in the SM

— Probe Yukawa-coupling to 2nd- generation
fermions and mass dependence

— Test of the Higgs coupling to leptons

 Small BR(H>pun)=2.2 X 10* @125 GeV
— 10 times smaller than BR (H - yy ) with a

larger background

 Small bump over a large di-muon
background from Drell-Yan events

— excellent di-muon mass resolution crucial

— Puts constraints on the tracking
performance needed for the upgraded

detector

— VBF mode is imp. for reducing backgrounds
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Other rare Higgs decays

H - Zy channel: ATLAS-PHYS-PUB-2013-014
— Can test the loop structure % o MRV
o SO —SMSignal -
— large background from Z boson radiative = gwof T o s ony i
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* Tough, but important to explore. New physics

could enhance rate. .



Using the Higgs “tool”:
portal to new physics
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Natural searches

* With the discovery of the Higgs boson,
the problem of the stability of M, against
radiative corrections has become urgent.

i3

— For m,, = 126 GeV, requires

Why is the Higgs so light ?
cancellation to 1 part in 10°%! Y &6 8

 Many searches designed for signatures Is my, stabilized by ~TeV
motivated by a “natural” solution to the scale new physics or is it
gauge hierarchy problem. fine-tuned ?
t
t t T T
,”“\ 2 H H
> {0 mpy ~ =---
My ~ ===- - )
O+ L
...... \ V. '
stop Top partner

 The lightest Higgs mass is allowed to naturally be at the electroweak

scale, no fine tuning required. .



Search for T =2 tH

 Consider decay to tH q v '
 bW/tZ coupling in production N y

* Event reconstruction w/ top and H candidates : T t T
* For large masses, top, H are boosted o :

g

e Optimized for H = bb CMS Delphes Simulation 3000 fb™" (14 TeV)
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Experimental requirements,
challenges and detector upgrades



EerrimentaI reguirements

* Reconstruct all standard physics analysis objects:
— Need high efficiency, low fake rate, and high resolution

e Requirements for success:
— Excellent electron, photon, muon and jet reconstruction

— Efficient b-quark tagging, precision reconstruction of primary
and secondary vertices

— Excellent missing Et resolution
— Increased acceptance at high n
— Boosted jet identification (W/Z/Higgs/Top jet tagging).

e For precision measurements and observations of very rare
processes need to at least maintain current performance for all
physics objects!

24



Challenge 1: Pileup

ATLAS

EXPERIMENT

HL-LHC tt event in ATLAS ITK
at <pu>=200




Challenge 1: Pileup

* Increases the combinatorial complexity and rate of fake tracks
* Adds extra energy to calorimeter measurements

 Increases the amount of data that has to be read out in each bunch
crossing

Mitigation/solution:

 High granularity detectors (trackers, calorimeters) needed to identify
particles associated with the primary hard scatter collision vertex with
high efficiency

* Precise timing measurement can be used to unambiguously associate

both tracks and neutral energy clusters to each vertex, providing
ultimate pileup mitigation
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Challenge 2: Trigger

Trigger has to become increasingly selective Period W lv

as luminosity increases

Need to maintain low thresholds for
sensitivity/ flexibility for unknown physics
— Higgs physics remains at low electroweak

scale; HL-LHC is about precision and rare
processes (e.g. HH)

— weakly coupled new physics will still be
open (e.g. final states with multiple low p;
leptons)

Trackers and muon systems can saturate at
high luminosity and readout rate
Pileup is an issue as well

— Can lead to an increase in trigger rates;
decrease efficiency of isolated triggers

Run1 80 Hz

Run 2 200 Hz
Run 3 400-600 Hz
HL-LHC 1KHz

One might think we can make it up
with [+X triggers (where X=jets, MET,
more leptons,...)

But multi-object triggers scale badly
with pile-up...

Mitigation/solution:

* Use track information in
the hardware trigger (L1)

* Migrate Offline-like
algorithms to High Level
Trigger (software) then to
L1




Challenge 3: Radiation Damage

 Detector elements and | MeV n, lucnce [paticles / ]
electronics are exposed to high
radiation dose 100

r [cm]

[ICAS Simulation

* Degrades signal, & limits life 80
time of detectors

60

— Inner trackers will be
exposed to very high
fluences and ionizing doses

— High doses also in forward .-
calorimeters

Mitigation/solution:
new tracker, and endcap calorimeters, new forward muons,
replacement of most of the readout systems
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ATLAS HL-LHC Tracker

4

= I L B L B B ]

ITk (Inner Tracker) |S a fu” upgrade E 1400 —ATLAS Simulation Preliminary —
o " ITk Extended N

of the ATLAS Inner Detector 12001 =0 E
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] AR T g0 -
occupancies low e ]
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Larger readout bandwidth z [mm]

capabilities

Reduced material in front of
calorimeters

Extended coverage at high n

— Extension of pixel system proposed
with “rings” in place of traditional
endcap disks

offers more flexibility for

placement of modules, services ”



ATLAS HL-LHC Calo/Muon Upgrades

Calorimeters:

Tile and Liquid Argon calorimeters

— Needed to cope with increased
radiation levels and trigger rates

Muons:

Readout electronics to be replaced
to support higher trigger rate and
MDT hardware trigger

RPCs added to inner station to
increase acceptance/robustness

Studying options for large n muon
tagger

Evaluating option of adding thin,
high-granularity timing detector in

require full electronics replacements front of end-cap calorimeter
(2.5<|n|<4.2)

Aim to reduce effect of pile-up on jets

Multi

ple layers of silicon and optional

tungsten absorber
Timing precision: 30-50 ps

0.8

0.6

0.4

Efficiency for pile-up jets

0.0

0.(

1.0—

Pile-up jet rejection power:

T T | T T T | T T T ! T T T | T T T
—— o0+=0ps

- 0=10 ps
- 0=20 ps
0+=30 ps

Efficiency strongly dependent
on timing resolution
—vs=14TeV, u = 200

| Pythia8 dijets

| pr > 20 GeV

III]IIIIIII

IlIlIII|III|[II|II

— .-ob_."»»'-.-‘—’.l.'.' — 1+ 0l 4oy

0.2 04 0.6 0.8 1.0

p—

Efficiency for hard-scatter jets



ATLAS HL-LHC TDAQ Upgrade

Deciding between two-level hardware trigger with hardware tracking
at Level-1 and a high bandwidth single-level trigger

[ m« | | calo | | Muon | Trigger [ m< ] [ calo ] [ Muon ] Trigger
0 1L L 5 7 l output rate / latency X g I = 1 l output rate / latency
\ A \ & : : ;
[ Felix | | Feiix |[| Felix | [ LoCalo | [LoMuon Level-0 | F;,:i,} | | F;:i,'( | | F;:i)l( ] [LoCalo | [LoNuon Level-0
il e SO 1 MHz /10 ps T T T L 1 MHz /10 ps
; g ; LO/R3 —_— | T T o opo
- ! R3;

gég(;:iher L1 Track DAQ/ .
: E E ; vy Event Filter i
i i 5 L1 Global Level-1 —
! S : 9 400 KHz / 60 pis
e - : L1CTP
Y A\ 4 \ 4

¥ ) 2 A 2 v
le | i
l_| Data Handlers [€ 1_Felix | £—‘ Data Handlers

Event —> Data to DAQ/Event Filter
Build Ev_ent —> Data Input to Trigger
urraer i Builder
—> Data to DAQ/Event Filter » Trigger Signals: LO
A S "H 5 \ 4 —> Data Input to Trigger v v v - Data .R dout
—> Trigger Data to Readou
¢ orage¢ andler I _____ » Trigger Signals: L0, L1 Storage Handler I 9
‘ ¢ trigger + Regional ¢
- Readout Request (R3) ¢ t ¢
Event Filter Event ) Event Filt Event
A tor — Trigger Data to Readout vent Filter ven
Processor ggrega A '
F Full Event A Regional | |Processor| | gyl Event ggregaor
arm Tracking Output Tracki Farm Tracki  outout
A, (FTK++) 10 KHz (E"'"FTC '"ﬁ) (F'aTi'"g)’ b
\ 4 racl } t ++ z
\ 4
Permanent Permanent
Storage Storage

Low latency (25 ps) two-level hardware system also under consideration. Trades latency for
higher trigger rate; thus increased trigger acceptance in certain channels — max rate TBD
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CMS HL-LHC Tracker

* Full tracker replacement

Phase-1

— Minimize material and increase granularity, with
ample hit coverage over tracking acceptance

. % 05 1 15 2 25 3 35 4
— Tracking coverage up to |n|<4
ff W
— Specifically designed to provide inputs to L1 o e
1.4
. 1.2
Trigger ! N
0.6
0.4
0.2]
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0.0 02 04 06 08 10 1.2 b
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E 12()0:_— '
| [T | | | 20
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CMS HL-LHC Trigger Upgrade

L1 (HLT) rates of 750 (7.5) kHz for 200

PU and 12.5 ps latency
Incorporate tracking at L1

Correlation of tracks with other Level-1

objects

— Better lepton ID, refine (muon)
momentum, assign jet vertex,

determine primary vertex, provide track-

based isolation ...

PU =140, 14 TeV

Lhation:
-+ L1Mu (Run
s —0—0 < In|<1.1(Q24)

+METaunganged) -

DB 1l nl<24(Q=4)
- L1TrkMu (Phasell: muon hits in > 2 stations)
T —e—0 <|n<1.1

Trigger rate [kHZz]

5 10 15 20 25 30 35 20 45 50
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CMS HL-LHC Calo/muon Upgrades
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Barrel calorimetry: New readout to provide

full granularity to hardware trigger to
improve isolation
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Forward calorimetry: will need replacement
due to radiation-induced signal loss
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— New High Granularity Calorimeter using

silicon sensors to allow detailed 4D (space- mfmm:f/i
time) reconstruction of showers /=

| 1

Improvements to Muon system

— Electronics upgrades to comply with Trigger
upgrade

— iRPCs and GEMs in forward (1.6<|n|<2.4)
region —enhanced redundancy and cope with
higher rates

PU =50, 14 TeV
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Lightjetrejection

Performance: b-tagging

* The capability of tagging b-jets is critical to the success of the Higgs and
search programs

— Detector aging and high pile-up lead to higher mis-identification
probability for fixed b-tagging probability

— Phase 2 detectors recovering the b-tagging performance goals for
Run 2
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Performance: pileup mitigation

* Mitigation of pile-up effects and rejection of pile-up objects will be
crucial to achieving optimum physics reach

 Timing information has proved promising as a way to mitigate pile-
up effects in reconstruction
— Feasibility of a dedicated timing detector being investigated

* Applying cuts on variables related to charged fraction helps reduce
number of pile-up jets, as does requiring track-jet matching criteria
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Performance: pileup mitigation

Mitigation of pile-up effects and rejection of pile-up objects will be
crucial to achieving optimum physics reach

Timing information has proved promising as a way to mitigate pile-
up effects in reconstruction

— Feasibility of a dedicated timing detector being investigated

New techniques relying on charged fraction help reduce number of
pile-up jets, as does requiring track-jet matching criteria
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Beyond the LHC



Future colliders

“Higgs factory” — a collider (most probably e+e-) with a center of mass energy
250 GeV and above and high luminosity [study the Higgs boson properties]

“~100 TeV” pp collider to get to the “next energy frontier” an order of magnitude
above LHC [study distances up to ~101° cm and particles masses up to ~50 TeV]

Linear colliders:
— ILC : International Linear Collider [Japan]
* 500 GeV linear e+e- collider (upgradable to 1 TeV)
— CLIC: Compact Linear Collider [CERN]
e 380 GeV linear e+e- collider (upgradable to 3 TeV)
Circular colliders:
— CepC : Circular Electron Positron Collider [China]

e ~250 GeV circular e+e- collider (the tunnel could be later used for pp
collider)

— FCC: Future Circular Colliders [CERN]
* 90-350 GeV e+e- and/or ~100 TeV pp
e HE-LHC: FCC-hh dipole technology (~16 T) in LHC tunnel = Vs ~ 30 TeV



Summary

e The LHC Run 1 and the ongoing Run 2 have been a fantastic success

— We found a Higgs boson and set severe constraints on physics
beyond the SM

* High Luminosity upgrade of the LHC offers huge potential to further
explore the High Energy Physics landscape

— Large gains in precision, discovery potential, and makes a number of
important, low cross-section measurements possible

* Challenges presented by high pile-up necessitate extensive detector
upgrades and use of advanced techniques for reconstruction and
analysis

 Looking ahead, a number of collider possibilities are being studied

— Will take precision to a new level and the search for new physics to a
multi-TeV scale

Much more detail in parallel session talks! "
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