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•  Probing the nature of cosmic acceleration 
•  Instrumentation for future cosmic 

acceleration surveys  
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Observational Evidence 
for Cosmic Acceleration 
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First Evidence for Cosmic Acceleration 
in the Hubble Diagrams of Supernovae [dL(z)]  

(Schmidt et al. 1998, Perlmutter et al. 1999) 

     faint 
 
 
 
 
 
 
 
 

     bright 
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Alternative Analysis of First Evidence 
Combined data of 92 SNe Ia from Schmidt et al. (1998) and Perlmutter et al. 
(1999), flux-averaged to reduce lensing & other non-Gaussian systematics.

       [Wang 2000b, ApJ ]
  

     

      Deceleration parameter 
       q0 =Ωm/2-ΩΛ 

 
 

          Data favor q0 <0: 
     cosmic acceleration 

      (a.k.a. “dark energy”) 
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Hubble diagram of 472 SNe Ia 
compiled by Conley et al. (2011) 

Yun Wang, October 2016 
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Evidence for Cosmic Acceleration  
Has Strengthened With Time 



Model-Independent Constraints on Dark Energy 
 

 X(z)=ρX(z)/ρX(0)           Wang, PRD (2016) 
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What is the Fate of the Universe? 
Wang & Tegmark, PRL (2004) 
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Probing the Nature of 
Cosmic Acceleration 

Yun Wang, October 2016 
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Incorporating Cosmic Acceleration  
Into the Cosmological Model 

•  Einstein’s Equation:  
         Rµν- gµνR/2 = 8πGTµν 
 

•  Modify the Einstein Equation: 
– Add a new energy component to the RHS:  
   dark energy models 
– Change the LHS by modifying the metric:  
   modified gravity models 

Yun Wang, October 2016 
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Some Candidate Models  
for Cosmic Acceleration 

 Cosmological Constant (Einstein 1917) 

 Quintessence (Freese, Adams, Frieman, Mottola 1987; Linde 1987; 
Peebles & Ratra 1988; Frieman et al. 1995; Caldwell, Dave, & Steinhardt 1998; 
Dodelson, Kaplinghat, & Stewart 2000) 

   K-essence: (Armendariz-Picon, Mukhanov, & Steinhardt 2000) 
 

    Modified Gravity  
 Vacuum Metamorphosis (Sahni & Habib 1998; Parker & Raval 1999)  
 Modified Friedmann Equation (Freese & Lewis 2002) 
 Phantom DE from Quantum Effects (Onemli & Woodard 2004) 
 Backreaction of Cosmo. Perturbations  (Kolb, Matarrese, & Riotto 2005) 
 Emergent Gravity (Padmanabhan 2009) 
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How to Probe the Nature of 
Cosmic Acceleration 

•  Cosmic expansion history H(z) or DE density ρX(z) 
 tells us whether DE is a cosmological constant 
   H2(z) = 8π G[ρm(z) + ρr(z) +ρX(z)]/3 - k/a2 

 

•  Growth history of cosmic large scale structure [growth 
rate fg(z) or growth factor G(z)] 
 tells us whether general relativity is modified, given 
H(z) 
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Observational Probes of Dark Energy  

•  SNe Ia (Standard Candles): method used in DE discovery; 
independent of clustering of matter, probes H(z). 

•  Galaxy Clustering (including Baryon Acoustic 
Oscillations as Standard Ruler):  BAO is calibrated by 
CMB, probes H(z); redshift-space distortions probe fg(z). 

•  Weak Lensing Tomography and Cross-Correlation 
Cosmography: probe a combination of G(z) and H(z). 

•  Galaxy Cluster Statistics: probes a combination of H(z) 
and G(z) 

Yun Wang, October 2016 
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Δr┴ = DAΔθ 
Δr|| = (c/H)Δz 

BAO“wavelength” 
in radial direction 
in slices of z : H(z) 
 
BAO “wavelength”  
in transverse  
direction in slices  
of z : DA(z) 
 
BAO systematics: 
è Bias 
è Redshift-space               
distortions (can be 
used to measure 
fg(z) if properly 
modeled) 
è Nonlinear effects 
 

Δr|| = Δr┴ = 148 Mpc = standard ruler 
BAO as a Standard Ruler Blake & Glazebrook 2003 

Seo & Eisenstein 2003 

15 
Yun Wang, October 2016 



The Use of 
Galaxy Clustering 
to Differentiate  
Dark Energy & 

Modified Gravity 
 Measuring redshift-space 
distortions β(z) and bias 
b(z) allows us to measure 
fg(z)=β(z)b(z)  

  [fg=dlnδ/dlna] 
 

 H(z) and fg(z) allow us to 
differentiate dark energy 
and modified gravity.   

   Wang (2008) 

Yun Wang, October 2016 
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Inconsistencies of Current data: 
BOSS DR11 vs. CMB 

Tension between BOSS 
DR11 BAO distance 
measurements and 
constraints from CMB 
data. 
     Anderson et al. (2014) 
 
This trend has continued 
in the BOSS DR12 data. 
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BOSS DR12 

18 

•  The BOSS team is working on their official paper for DR12, 
Anderson et al. (2016)  

•  Four papers have been published by subsets of the BOSS team 
•  The H(z) and DA(z) measurements at z=0.32 and z=0.57 are 

consistent with DR11 results 
•  The growth rate measurements at z=0.32 and z=0.57 appear 

sensitive to model assumptions 

Gil-Marin et al. (2016), 1606.00439 
Yun Wang, October 2016 



BOSS DR12 and CMB: 
the Tension Continues 

The growth rate as a function 
of redshift. The central blue 
band is the prediction from 
Planck assuming GR 
(γ=0.545). The red squares 
are results from BOSS DR 
12 (the empty squares differ 
in modeling assumption and 
are slightly displaced for 
clarity).  
 
Gil-Marin et al. (2016), 1606.00439 

Yun Wang, October 2016 
19 



Future Cosmic Accleration Surveys       
(an incomplete list) 

Galaxy Redshift Surveys: 
•  BOSS (2011-2014): 10,000 sq deg GRS for LRGs, 0.1<z<0.7 
•  HETDEX(2014-?): 420 sq deg GRS, 1.9 < z < 3.5  
•  eBOSS (2014-2020): GRS over 7,500 sq deg for LRGs (0.6<z<0.8), and over 

1500 sq deg for [OII] ELGs (0.6<z<1) 
•  PFS (2018?-): GRS of ELGs over 1400 sq deg (0.6<z<2.4)  
•  DESI (2018?-2022): GRS over 14,000 sq deg for LRGs (0.1<z<1.1) and 

[OII] ELGs (0.1<z<1.8?) 
•  Euclid (2020-): GRS over 15,000 sq deg of ELGs (0.7<z<2) 
•  WFIRST (2024?-): GRS over ~2200 sq deg of ELGs (1<z<3) 

Weak Lensing Imaging Surveys: 
•  DES (2013-?): optical WL over 5000 sq deg (i=24) 
•  Euclid (2020-): NIR WL over 15,000 sq deg (R+I+Z=24.5, H=24) 
•  LSST (2023-?): optical WL over 18,000 sq deg (r=24.5) 
•  WFIRST (2024?-): NIR WL over 2200 sq deg (H~26.5) 

20 
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Instrumentation for Future 
Cosmic Acceleration 

Surveys  
 

Yun Wang, October 2016 
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“Future Cosmic Surveys”  
(2016, Chicago) 

Five potential future projects, outlined in “Cosmic Visions Dark Energy: 
Science” (DOE), were discussed at this meeting: 
1.  Southern Spectroscopic Instrument: wide-field, highly multiplexed 

spectroscopy on intermediate-to-large aperture telescope in the 
southern hemisphere 

2.  DESI-2: beyond DESI, aims to obtain spectra of 100M galaxies using 
[OII] to z=2.5 

3.  Low Resolution Spectroscopy: dz/(1+z)>0.003, high galaxy number 
density  

4.  21 cm: probes reionization, heating, the dark ages, and LSS 

5.  Billion Object Apparatus (BOA): 1 billion optical spectra in 
the radio (SKA2 HI survey), or in the optical (most powerful cosmic 
acceleration science) 

Yun Wang, October 2016 
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Massively Multiplexed Spectroscopy: 
the Next Frontier 

•  100M-1 billion galaxy spectra  
•  High galaxy density, which enables  

– multi-tracer studies of cosmic acceleration via 
BAO/RSD, to evade the cosmic variance and 
boost statistical power 

–  higher order statistics, to enable tighter and 
more robust cosmological constaints 

Yun Wang, October 2016 
23 



BOA Survey Design 
(from	
  Kyle	
  Dawson’s	
  presenta3on	
  at	
  “Future	
  Cosmic	
  Surveys”)	
  

•  35k	
  targets	
  per	
  sqdeg,	
  14k	
  sqdeg	
  
•  Magnitude	
  limited	
  sample	
  to	
  z<1.5	
  
•  UGR	
  selec3on	
  for	
  1.5<z<3.25	
  
•  500M	
  spectra	
  
•  15X	
  DESI	
  

•  350M	
  Fourier	
  modes	
  
•  30X	
  DESI	
  

•  10m	
  telescope	
  
•  6X	
  DESI	
  collecting	
  area	
  

•  1	
  hr	
  exposures	
  for	
  ?90%?	
  redshift	
  success	
  
•  2.4X	
  DESI	
  exposure	
  times	
  

•  Overall	
  ~4X	
  be\er	
  [OII]	
  sensi3vity	
  than	
  DESI	
  for	
  low	
  z	
  sample	
  
• 3600-­‐13,000	
  \AA	
  

•  Includes	
  IR	
  channel	
  for	
  [OII]	
  detection	
  to	
  z=2.5	
  
•  R~4000	
  for	
  sky	
  subtraction	
  and	
  [OII]	
  identification	
  



λ = 980 - 1200 nm is a good atmospheric window from the ground
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From David Schlegel's presentation at "Future Cosmic Surveys 



BOA Survey Characteristics 
	
  	
  	
  	
  	
  	
  (from	
  Kyle	
  Dawson’s	
  presenta3on	
  at	
  “Future	
  Cosmic	
  Surveys”)	
  

• Conserva3ve	
  Assump3ons	
  
•  1000	
  hours	
  open	
  shu\er	
  per	
  year	
  
•  1	
  hr/exposure	
  
•  10	
  yr	
  program	
  

•  10,000	
  unique	
  poin3ngs	
  
•  2.5	
  degree	
  FOV	
  (4.9	
  sqdeg	
  per	
  field)	
  
•  Three	
  passes	
  per	
  coordinate	
  (3hrs	
  with	
  repeat	
  visits	
  to	
  lyman-­‐alpha	
  forest	
  
tomography	
  targets)	
  

• Assume	
  80%	
  fiber	
  efficiency	
  
•  13k	
  fibers	
  per	
  sqdeg	
  
•  65k	
  fibers	
  for	
  instrument	
  

•  Increase	
  fiber	
  density	
  2X	
  to	
  reach	
  1B	
  spectra	
  



BOA: Possible Telescope Design 

	
  
•  Two	
  designs	
  for	
  massively	
  mul3plexed	
  
spectrographs	
  on	
  10-­‐m	
  class	
  telescope	
  

•  Pasquini	
  et	
  al.,	
  2016	
  
•  Fiber	
  design	
  

•  2.5	
  degree	
  diameter	
  (4.9	
  sqdeg)	
  
•  1.3	
  meter	
  focal	
  plane	
  diameter	
  (Cass	
  focus)	
  

• Ring	
  design	
  
•  1.5	
  degree	
  diameter	
  (1.0	
  sqdeg)	
  
•  4.6	
  meter	
  focal	
  plane	
  diameter	
  (Coude	
  focus)	
  

• Bigger	
  spectrograph	
  on	
  bigger	
  telescope:	
  
•  Cass	
  versus	
  Coude	
  
•  FOV	
  considera3ons	
  

(from	
  Kyle	
  Dawson’s	
  presenta3on	
  at	
  “Future	
  Cosmic	
  Surveys”)	
  



BOA: Spectrographs 
•  DESI	
  design	
  with	
  4th	
   channel	
  
•  Silicon	
  +	
  Germanium	
  CCDs	
  
•  Si	
  for	
  two	
  channels,	
  3500<lambda<8000	
  \AA	
  

• Well-­‐known	
  technology	
  
•  Ge	
  for	
  two	
  channels,	
  8000<lambda<13,000	
  \AA	
  

•  New	
  CCD’s	
  being	
  developed	
  at	
  Lincoln	
  Labs/LBNL	
  
From	
  Christopher	
  Leitz	
  (MIT	
  LL)	
  

(from	
  Kyle	
  Dawson’s	
  presenta3on	
  at	
  “Future	
  Cosmic	
  Surveys”)	
  



Collimator 
Mirror 

Blue 
Grating 

Red 
Grating 

NIR 
Grating NIR Pass Dichroic 

Red Pass 
Dichroic 

Fiber Slithead 

λ = 980 - 1200 nm
Resolution = 6000 - 7200 
Germanium CCDs                        
NIR 

Camera 

Add 4th arm to all 10 spectrograBpluhes
Camera Red 

Camera 

IR 
Grating 

IR Camera 
w/Ge CCD 

Beyond DESI: instrument upgrade 

New IR camera 
with Germanium CCD 

(From David Schlegel's 
presentation at "Future 
Cosmic Surveys) 



J band 

Beyond DESI: instrument upgrade 

λ = 980 - 1200 nm is also well-matched to Ge CCD detectors
(From David Schlegel's presentation at "Future Cosmic Surveys”) 



Beyond DESI: instrument upgrade 

Ge CCD detectors are in development
•  Most fabrication steps identical to silicon CCDs
•  Final processing would be at labs
•  Readout systems would be identical to CCDs
•  Better than HgCd detectors because thermal photons rejected

SiO2 insulation grown at 
950C 
Germanium melts at 937C 

Overlapping polysilicon gate 
electrodes 

(From David Schlegel's presentation at "Future Cosmic Surveys”) 



BOA: Technical Challenges 

• Details	
  of	
  target	
  selec3on	
  and	
  exposure	
  depth	
  
• What	
  is	
  optimal	
  number	
  density	
  for	
  z<1.5	
  and	
  z>1.5?	
  
• What	
  is	
  the	
  expected	
  redshift	
  success	
  rate	
  versus	
  exposure	
  time?	
  
• What	
  are	
  requirements	
  for	
  spectroscopic	
  completeness?	
  
• What	
  are	
  maximal	
  allowable	
  uncertainties	
  in	
  the	
  selection	
  func3on?	
  

•  Fiber	
  placement	
  
•  How	
  to	
  fill	
  focal	
  plane	
  with	
  ~100,000	
  fibers?	
  

•  Spectrographs	
  
•  DESI	
  design	
  with	
  4th	
   channel	
  possible	
  
•  How	
  to	
  scale	
  production	
  to	
  accommodate	
  ~100,000	
  fibers?	
  

(from	
  Kyle	
  Dawson’s	
  presenta3on	
  at	
  “Future	
  Cosmic	
  Surveys”)	
  



Promising Technology:  
Digital Micromirror Devices (DMDs) 

•  Commercial product by Texas Instrument 
•  Alternative slit selector studied in 2002 for JWST  
•  DMD-based multi-object spectrographs (MOS) have been built 

for ground-based telescopes: RITMOS (Mees Observatory 24 
inch, 2003) and IRMOS (0.8-2.5 microns on KPNO 4m, 2004), 
both with 848x600 TI DMD 

•  NSF has funded a $1.5M project (9/2016-8/2018) to build a 
MOS for SOAR (4.1m), with 2048x1080 TI DMD 

•  Gemini funded a study in 2015 for a $15M Gemini MOS, with 
2048x1080 TI DMDs 

Yun Wang, October 2016 
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Texas Instrument DMDs 

•  A DMD is a microelectrical 
mechanical system (MEMS) 
built on top of a memory 
array. 

•  It primary purpose is a 
spatial light modulator 
(SLM). 

•  The mirrors tip about the 
diagonal ±12°  

 

(Slide from Massimo Robberto) 
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Digital Micromirror Devices 

DMDs come in different format; 
Tens of million pieces have been 
produced for consumer market  

•  Cinema 2K model 
•  2048×1080 elements  
•  Square mirrors, 13.8µm side 
•  92% filling factor 

(Slide from Massimo Robberto) 



DMD-based MOS on SOAR 
(Slide from Massimo Robberto) 



Optical Layout for SOAR 
(Slide from Massimo Robberto) 



DMD Wishlist 

•  Many more micro-mirrors per DMD, with each 
micro-mirror at least 13.8µm on the side 
(2048x1040 TI Cinema DMD) to allow 
simplicity in optical design. Could very large 
format DMDs be used (instead of 100k fibers) 
for BOA? 

•  Longer wavelength cutoff (limited by the 
operating temperature of the controlling 
electronics), to allow NIR and IR observations. 

Yun Wang, October 2016 
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Cosmic Acceleration  
Parallel Session at CPAD 2016 

   Conveners: Elisabeth Krause & Eduardo Rozo 
 
• Aaron Roodman: Summary of the Cosmic Visions Report 
• Jeff Newman: Physics with future Spectroscopic Surveys 
• Blake Sherwin: Physics with future CMB Surveys 
• Dragan Huterer: Constraining Inflation with CMB and LSS 
• Laura Newburgh: Physics with future Intensity Mapping Surveys 
• Salvatore Vitale: Cosmology with Gravitational Wave Events 
• Oliver Dore: Enhancing WFIRST Science with Ground-Based Surveys 

✪ There are mysteries in the Universe in addition to cosmic acceleration. 
✪  Surveys optimized for probing cosmic acceleration also lead to spectacular 
    data for probing early Universe physics. 

Yun Wang, October 2016 
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Back-up Slides 

Yun Wang, October 2016 
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Weak Lensing Tomography and 
Cross-Correlation Cosmography 

41 



•  Weak Lensing Tomography:           
compare observed cosmic shear correlations 
with theoretical/numerical predictions to 
measure cosmic large scale structure growth 
history G(z) and H(z) [Wittman et al. 2000] 

 
•  WL Cross-Correlation Cosmography  

measure the relative shear signals of galaxies at 
different distances for the same foreground 
mass distribution: gives distance ratios dA(zi)/
dA(zj) that can be used to obtain cosmic 
expansion history H(z) [Jain & Taylor 2003] 

42 
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Clusters as DE probe 

1) Use the cluster number density and its redshift 
distribution, as well as cluster distribution on large 
scales.  

2) Use clusters as standard candles by assuming a 
constant cluster baryon fraction, or use combined 
X-ray and SZ measurements for absolute distance 
measurements. 

•  Large, well-defined and statistically complete 
samples of galaxy clusters are prerequisites. 

43 
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Testing Gravity: 
Measuring the Metric 

In the conformal Newtonian gauge (the longitudinal gauge), the 
perturbed Robertson-Walker metric is given by 

ds2 = a2(τ)[−(1+ 2φ)dτ2 + (1 −2ψ)γijdxidxj] 
• Applicable only for scalar mode of the metric perturbations 
• φ: the gravitational potential in the Newtonian limit 
• γij: the three-metric for a space of constant spatial curvature 
 
WL: probe φ+ψ 
GC/RSD: probes φ (peculiar velocities follow 

 gradients of the Newtonian potential) 

Yun Wang, October 2016 
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How Many Methods Should We Use? 

•  The challenge to solving the DE mystery will 
not be the statistics of the data obtained, but 
the tight control of systematic effects inherent 
in the data. 

•  A combination of the three most promising 
methods (SNe, GC/BAO, WL), each 
optimized by having its systematics 
minimized by design,  provides the tightest 
control of systematics. 

Yun Wang, October 2016 
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Dark Energy Equation of State 

•  Equation of state w = p/ρ 
– Matter: p = 0 (w = 0) 
– Radiation: p = ρ/3 (w = 1/3) 
– Dark energy: p = wX(z) ρ 
   Cosmological constant: p = -ρ (w = -1) 

Yun Wang, October 2016 
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DMD-based MOS on SOAR: 
Main Parameters 

(Slide from Massimo Robberto) 



GMOX baseline parameters 

Nr. of Channels 3 (Blue, Red, NIR arm) 
GMOX Arms/Channels  •  Blue arm: 3,300 - 5,890Å

•  Red arm:  5,890 – 9,700Å 
•  NIR arm: 

•  YJ-channel: 0.97 - 1.37µm (1.45µm 
dichroic)  

•  H-channel: 1.50 - 1.80µm (1.9µm dichroic)  
•  K-channel: 2.01 - 2.42µm  

Field of view 171” x  90” @ f/16 (Gemini N+S+ALTAIR) 
83” x  44” @ f/32 (GEMS) 

DMD type 
 

Cinema 2K, 2048 x 1080 mirrors 
13.0µm side, 13.7µm center-to-center  

Mirror scale 83.3 mas/mirror @ f/16 
40.0 mas/mirror @ f/33.2 

Nominal resolving power  R = 5,000 

(Slide from Massimo Robberto) 



GMOX Baseline Parameters 

Nominal slit-width & sampling 
 

Blue: 0.41” (5 DMD mirrors) - 3 CCD pixels/slit  
Red: 0.33” (4 DMD mirrors) - 3 CCD pixels/slit  
NIR: 0.25” (3 DMD mirrors) - 2.75 FPA pixels/slit 

Detectors Blue, Red:  
CCD  E2V290-99, 9,216 x 9,232 pixels (baseline) 
or CCD STA1600, 10,560 x 10,560 pixels 
NIR:  
3 FPAs, model HI4RG, 4,096x 4,096 pixels 

Nr. of spectra  ~ 400, assuming 5 mirrors/target 
Acquision + Slit-viewing + Tip-tilt 
control camera 

Present on 
•  Blue Channel  
•  Red Channel 
•  IR Channel 

(Slide from Massimo Robberto) 


