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NEAR DETECTORS
CURRENT AND UPCOMING CHALLENGES



GUIDANCE:

e "Should cover the potential near detector technologies for the
experiments presented in the previous talk, with focuses on the
challenges of neutrino interactions and systematic error
constraints.”

¢ Known knowns:
* near detectors for current and past experiments
* Known unknowns:

* near detector concepts for upcoming experiments like DUNE and
Hyper-Kamiokande

e Unknown unknowns:

e will current near detector concepts for DUNE/HK accomplish their
goals?



OVERVIEW

* Near detector design is intimately tied to systematic errors
e what are the systematic errors?
* How does one optimize near detector design?
* Over the year I've heard several very general “mantras”, “rules”,
etc. regarding near detectors
e Reuvisit these statements? What motivates them?
* Are they true? Have things changed?

e important to know what the ND is supposed to do in order to sensibly
design one

Follow

e Evaluate current challenges @ vomes o

.@thenhill John Oliver had his people call to

e Focus on accelerator-based experiments ask me to be on his very boring and low
rated show. | said "NO THANKS" Waste of
time & energy!

Wi Last Week Tonight Follow

TONIGHT

A couple of points...

1. Yes, we have a boring show.

2. At no point did we invite Donald Trump
3 to appear on it.




REMINDER: LBL PHYSICS

L
[ Py, —v,)~1- (COS4 015 sin? 2053 + sin® 2013 sin” 6’23) sin? Amgl 15 J

2 2 ..
e Measurement of sin 20,,and Am" . Precision of ~1% needed

-~

sin2[(1—x)A] \

P(V,u — Ve) ~ Sil’l2 2(913 X‘ SiIl2 923 ‘ X (1—2)2 |
~30% max. effect ‘ —a sin ‘ X sin 2015 sin 2015 sin 2053 X sin A Smfﬂ- Sm%(ll;)m]
Lacosd X Sin 2019 sin 2015 8in 203 X cos A SREA] Sin((ll__f)m]
2
+0(a”) ~10%-50%
o — Am%l N i A = Am%lL .= 2\/§GFN6E
\ Am%l 30 - 4FE ~ Amg, /
M. Freund, Phys.Rev. D64 (2001) 053003

* sin®20,, dependence of leading term

e 0,, dependence of leading term: “octant” dependence (0,;=/>/<45°?)

* CP odd phase &: asymmetry of probabilities P(v,—v,) # P(y,—v,) if sin & # O
e Matter effect through x: v, (v,) enhanced in normal (inverted) B

Bottom line: it's complicated!
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NEUTRINO FLUX

: Neutrino Beam Recipe

| Neutrino Energy
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* (absolute) neutrino flux estimates considered a very
difficult proposition

o reflected in large and “unreliable” errors, lots of
“difficult” physics

e “neutrino flux cannot be predicted” >30% uncertainty
typical in the past

. Bottom line: it's complicated!



NEUTRINO CROSS SECTION:

from G.P. Zeller

G. Zeller
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* At high energies, interactions well understood experimentally and theoretically

e parton-level deep inelastic scattering dominates the cross section

* Nature has given us a miracle and a curve ball:

* neutrino oscillations can be probed with accelerator-based beams on a terrestrial scale

e oscillation maximum occurs at O(1 GeV) where there is a “rich” mix of nucleon
(resonance production, etc.) and nuclear effects (multibody effects, etc.).
Bottom line: it's complicated!
6 and much of it isn’t particle physics!



DETECTOR SYSTEMATICS:

* top down: systematic for each piece of information you want from your detector

e kinematics (energy/momentum scale, resolution, sign) and overtaxing

e particle identification,etc.
e bottom-up: systematic for each aspect of your detector

* water transparency, reflectivity, scattering, PMT response . ....

e alignment, material composition, particle interactions (EM, hadronic interactions, etc.) .
o drift lifetime, diffusion, etc.
 efficiency/resolution of active elements

* etc., etc.
D. J. Griffiths: Introduction to Elementary Particles

“neutrino experiments are notoriously difficult”
7



BASIC NEAR DETECTOR STRATEGY

spectrum ratio
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e Systematic uncertainties can be cancelled by measurements
ot the unoscillated neutrinos
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“"ONLY DISAPPEARANCE EXPERIMENTS"”

e ....need near detectors"”

e Basic idea:
* as before, detectors observe
N=®,6 X0, XE¢€
* if there are large uncertainties in
b, X o,

* itis difficult to make “disappearance measurement” which has
as its primary signal a deficit of events.

* |f definitive spectral distortions are visible, than one can
circumvent this “rule”.



Survival Probability

EXAMPLES DISAPPEARANCE
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e SKis"”
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EXAMPLES: APPEARANCE
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= appearance

| parent . .
° we are moving into the measurement phase . . ..
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“"UNDERSTAND YOUR FLUX . .. "

® 1

. . . and you can do wonderful things. “
e sounds obvious, who could disagree?

e understanding (half) of the initial state of an interaction
seems beneficial.

o other kinds of experiments (colliders, etc.) make a
signiticant effort to understand initial state (luminosity, etc.)
even if normalization factors, etc. come from elsewhere

e However, | have encountered a lot of resistance:
e there's a near detector so | don't care

e understanding neutrino tlux is difficult; is it worth it?

12



NEUTRINO FLUX PREDICTION

172K .

v-Mode Beam Power
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* Hadron production from the target POT total: 1.510x102! v-mode POT: 7.53x1020 (49.86%)
e usually dominant uncertainty
90

e followed by subsequent interactions

* Precise monitoring of beam
* accelerator variations (primary protons)

* beam line variations (horn current, alignment, etc.)

N Events / 0.0008 GeV
(e)]
o

° more dramatic/drastic changes . . . .

"Standard candles”

* v-e elastic scattering, inverse muon decay, etc.

80F4= POT-Normalized
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B ne 1182
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* obvious challenges (statistics, energy range, etc.)
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RECENT EXAMPLES:
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* NOMAD
* ~4% energy dependent uncertainties with ~4% overall normalization uncertainties
e T2K

e with dedicated effort, 2009 NA61/SHINE thin target measurements, uncertainties reaching ~10% level
e with NA61/SHINE replica target, uncertainties of ~5% are within reach

* My opinion:
e these efforts are important and sometimes under-appreciated (particularly dedicated efforts)

e something as important as the incident neutrinos should be understood as well as practically possible.
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Flux Parameter Value

“THE PURPOSE OF THE NEAR DETECTOR"”

e ", ..is to measure the flux.” "orefit”

s 'S
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“"NEAR AND FAR DETECTOR . . . ."

1

"
o I

. . . . should be identica
* Obvious strategy when one considers
Npp = ®, X 0, x € X Pyge(0, Am?)
NND — (I),/ X 0, X E

e cancel € by maximizing correlation between near and far.
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“IDENTICAL DETECTORS"”

e \WWhat does it mean to be “identical” when
they cannot be identical?

o Often the case for LBL:

° no way to replicate far detector (multi-kT)

* How to achieve "practically identical”?
e K2K 1 kTon WC detector
e use same overall method, components
e 20" PMTs, readout electronics, etc/
e as far detector (SK)

* size is an intrinsic aspect for some detectors

e Further consideration led to:

e T2K 2km proposal: 5" PMTs
e NuPRISM: 3" PMTs

* to achieve greater effective granularity

17



OTHER ISSUES

e Pile up:
* interaction rates very different in near/far detector
* near detectors may not be deep underground;
* significant cosmic ray rate
e Containment:
e smaller detectors may not contain muons, photons, etc.

* need cost-effective means to measure outgoing muons, escaping
photons over large volume

* Information:
* unexpected systematics, data/MC discrepancies may arise

e complementary/additional capability with tfar detector may be
needed to resolve issues (scintillation, magnetization, etc.)

18



EXAMPLES

e DUNE “reference” near
detector design with straw-
tube tracker

* magnetized

* low-density

19

B ND280: Tracking near detector
for T2K (SK far detector)

MUl ° Sign selection, lower particle

detection threshold, particle
| detection capability.

LUl ° Challenges: planar geometry with
wide angle particle production.




NEUTRINO ENERGY RECONSTRUCTION

* Kinematic: e Calorimetric
* target reaction hypothesis, e.g. ° sum energy in the event
vtn— L _Hi o typically:
vEp o Ea T D Ey = Eiep + Enaa

* identily events consistent with e calorimetric reconstruction of

hypothesi
YPOMESIS hadron shower

e e.g. CC events with no pions . _
* particle-by-particle

* exclusive selection (e.g. y+p+(m) )

Proton Module Standard module
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ENERGY RECONSTRUCTION

M. Martini, et al. Phys.Rev. D87 (2013) no.1, 013009
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e Kinematic: kinematically different channels with
potentially indistinguishable final states
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e how to measure: predicted final states rely on nuclear

model (large uncertainty), final state interactions

e Calorimetric: amount of energy going into

undetectable particles

e relies on getting final state content correct through

underlying reaction, final state interactions, and

secondary interactions
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ISSUES

A. Ankowski et al., Phys.Rey. D92 (ZOJ 5} np.?, 09]3()1

DIS events — v,
----- - 0%

- === 50%
—— 100%

~1.
g 6 o ANL, DB
@ 1.4F 2 &w.nb, |
o Famis Il
= ’ 192
£ 1.20 =Nl K 1 [
¥
1 1l 1 i 4R Ml
o i l
o 0.8 g %
@ -0~
= 0.6 [-— i %
‘-:J ™ >[< * T2K,C
0.4 ik et
111 A GGM, CSHSCF3Br
0.2 ol v Serpukton A
* SKAT,CFaBr
0 [ml P | | L e a1
10" 1 10 102
E, (GeV)



THE CHICKEN AND THE EGG

e |deally: measure neutrino interaction final states as a function of neutrino energy

* However, we use the final state to infer the neutrino energy
* the neutrino doesn't tell us its energy other than through its interaction products

e we can only measure properties inclusively over the entire energy spectrum

TAI L P B
NEAR COMPLEX SERVICE BUILDING
-5,

e Several possibilities

DETECTOR ( ) ( ) ‘
—] —
I ] — L 1 ’

: /7
* employ more than one energy reconstruction strate ’ {

7+ beam scenario |
— v, FFAG lattice 11

e e.g. both kinematic and calorimetric 1010

- 1, FFAG lattice 11

e find other ways to control neutrino energy Hr,\l]]w 1 FFAG lattce 11

10°
nuPIL
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CHALLENGES FOR THE FUTURE:

Hyper-Kamiokande DUNE
120_ DUNE v, appearance 35: DUNE v, appearance
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e Recall: neutrino oscillation are driven by true energy
e correct E, spectrum essential to predict oscillation signature (including rate), extract parameters
e this relies on an accurate understanding of how we reconstruct E,

* Large "wrongsign” contribution in antineutrino mode: ~25% in each experiment

* need measurements in near detector to understand this “background”
23



CONCLUSIONS:

Near detectors are needed for the next generation of oscillation experiments
e they are a central aspect of the measurement strategy

e please dont do a LBL (or a SBL) neutrino oscillation experiment without one and without a careful
consideration of its design.

° aswe "up" the game, revisit the "identical detector” strategy
Past experience is always valuable
* however, we are playing a new game
e don't accept existing rules-of-thumb/dogma for granted
Please support:
e hadron production measurement and flux estimation efforts
* neutrino interaction modelling and measurement efforts
We should be prepared for surprises
e there is a very well defined paradigm for the physics . . . ..
e butit's very complicated, relies on challenging modelling of v production, interaction, detection
e and there is a significant chance for physics beyond this paradigm

* we should build near detectors that are up for the challenge
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* Fields Institute at the University of Toronto

e See you there!




