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What is the EIC:

A high luminosity (1033 - 1034 cm-2s-!) polarized electron proton/ion
collider with /s, = 20 - 100 GeV upgradable to 140 GeV

Why an EIC:

Revolutionize our view of nucleon structure and the glue!
—a very diverse physics program impacting

nuclear, heavy ion and high energy physics
Eur. Phys. J.A (2016) 52: 268 Electron-lon Collider:The next QCD frontier

What is new/different:

Hera: factor 100 to 1000 higher luminosity
both electrons and protons / light nuclei polarized
nuclear beams: d to U

Fixed Target Facilities:
at minimum > 2 decades increase in kinematic coverage in x and Q?

SPIN-2016 E.C.Aschenauer



Electron Ion Colliders
Past and Possible Future

o We recommend the allocation of resources to develop accelerator and detector tech-
nology necessary to lay the foundation for a polarized Electron Ion Collider. The

EIC would explore the QCD frontier of strong color fields in nuclei and precisely
image the gluons in the proton.

NSAC LRP 2007

HERA @ DESY LHeC @ CERN

Vs [GeV] 320 800 - 1300
proton Xyin 1x105 5x107

ion p pto Pb

polarization - -

L [cm-2s-1] 2x10% 1034
Interaction Points 2 1(7)
Year 1992 - 2007 post ALICE

* A high luminosity, high-energy
polarized Electron lon Collider (EIC)
is the U.S. QCD Community’s

highest priority for future
construction. NSAC LRP 2015
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eRHIC Design Study
An Electron-Ion Collider at BNL
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EIC Project Status

The EIC received in the 2015 Long Range
' Planning of the NSAC the following recommendation

*“ “We recommend a high-energy high-luminosity
¥ #3) polarized EIC as the highest priority for new
%4 facility construction following the completion of FRIB”

LONG RANGE PLAN http://science.energy.gov/~/media/np/nsac/pdf/2015LRP/2015 LRPNS 091815.pdf
for NUCLEAR SCIENCE

) N

Next Steps:
A National Research Council (National Academy of Science
(& Engineering & Arts) review of the project is expected to begin
soon,
and a report is expected in ~18 months. After the DOE will launch its
Critical Decision (CD) process...
O CDO soon after the NAS review.... (FY2018)
O CD1: site selection
a with a scenario of 1.6% growth in US nuclear science funding
from now on
- CD3 start of construction estimated in 2022/23
SPIN-2016 E.C.Aschenauer



EIC Defecf;or Concepts

Flux-return
coils - return
Muon chambers : .
top view
I Modular (flux return yoke) (top ) coils i
aerogel :
| mirrors
i solenoid coil [ |
i [Z ".I
- EMcal (Sci-Fi) ' PWO,
EMcal
i DIRC & TOF

‘ertex (Si pixe

I

I

I

I

I

I

I

I

I

| = — — "
I ' Central tracker RN o
I or III
I

I

I

I

I

I

I

I

I

I

(low-mass DC)

[
4
B8
8¢
8 2
GEM trackers v GEMC implementation &
; ra: ;rs 5 m by Zhiwen Zhao ’m
of e Zn
silicon trackers magnet yoke - .
electron endcap central barrel hadron endcan

3T solenoid cryostat I

Micromegas barrel

Current emphasis on the design of a multipurpose detector
I

Both (eRHIC & JLEIC) IR-designs :integrate

auxiliary detectors from the beginning;

—> critical for physics program aanI to control systematics

 luminosity monitors |

1 large acceptance for diffractive proton detection and
neutrons from nuclear breakup

 electron & hadron polarimetry

O low Q2-tagger SPINL2016 E.C.Aschenauer




Why are we doing calorimeter R&D for a generic central detector?

Calorimetry wise, we wanted to have similar

resolutions of H1/ZEUS, but it has to be more
compact

* Luminosity (IP design +- 4.5 meters)

* PID is much more important than at HERA
EIC Detectors 9m long (4pi PID)
HERA Detectors 15 m long

Advances in micro pattern detectors.
Advances in photodetectors. (APD, SiPMs)

[m Inatrumenied Iron (iron atabs + streamer tube detectora)

@ Forward tracking and Transilion radiators Muan torald magnet
EI Elactromagnatic Calorimatar {land) @ Warm electromagnelic calorimeter
Liquild Argon
@ Hadronlc Calorimeter {(stalnlesa steel) E Plug calorimegtar {Cu, Sl)
@ Suparconducting coil (1.2T) @ Concrate shislding C PAD 20 I 6
Compensating megn: ot @ Liquid Argon cryostat
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EIC Detector R&D Program started in 2011:

https://wiki.bnl.gov/conferences/index.php/EIC_R%25D#Received_Proposals

* Technology
Seeds for future Collaboration(s)

Motivation for W/ScFi Calorimeter R&D:

(Back in 2011. RD1 - UCLA, PSU, TAMU)

Develop techniques to build
sampling calorimeters with good characteristics.

- to the level that a typical university group can build it without

heavy investments in “infrastructure”.
- fraction of the cost of crystals.

- tuneable for particular experimental requirements.

CPAD 2016 8



Construction Method:

Form matrix of Fibers
Pack it with W powder
Replace air with epoxy
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First SPACAL prototype. Year 1 R&D. FNAL 2012

Parameters:
Final Density - ,

S -2.4% (electrons),
Sc. Fibers -SCSF78

@ 0.47 mm T_

Spacing 1 mm center-to-center. =
i

Supermodule 2x2 towers. P h

Details: _

Dimensions 16.6 x 5.33 x5.33 cm3 i R

Weight of supermodules (4567, '

4651, 4627,4630 g.)

Number of fibers -3120

Resolution ~12%/E S

Light yield 2000 p.e./GeV .

SiPM Readout
Possible.

10 CPAD 2016

RD1 Collaboration, EIC R&D
Proof of principle, Jan 2012
Test Run at FNAL T1018
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Central EM Calorimeter (BEMC) for EIC.

same tungsten powder + fibers technology as FEMC

towers are tapered, sampling fraction along the tower depth

tive geometry; radial distance from beam |

non-projec

lation does not show any noticeable difference

-> Simu

resolution between straight and tapered tower calorimeters

CPAD 2016



EM Calorimeters Prototypes. FNAL 2014

STAR/EIC
Forward.

EIC Barrel EMcal

EIC BEMC. Tapered towers (for inner radius of EMCal of 120 cm). 18
towers, each 18Xo deep. Dimensions of tower at the outer radius is
2.5 x 2.5 cm. Fibers SCSF78M, diameter 0.5 mm. Initial reflector at
the front end of the fibers ESR glued with silicone.

STAR EMCal. 16 straight towers. 23Xo deep. Dimensions of single
tower 2.5 x 2.5 cm. Fibers SCSF78, diameter 0.47 mm.
Reflector at the back end of the fibers Bicron BS620.

CPAD 2016 12



CPAD 2016 Compact 18X, EIC CEMC



Hadronic Calorimeter Profofype m‘ FNAL

TE
e f’l'i'/fmuml

e =
Ll | ,i mﬂ’ﬂﬂﬂ nnm

HCal is ~4 interaction lengths Pb/scintillator.
Readout is from Hamamatsu S10931-025p SiPMs
attached to wavelength shifting plates which run the
length of the detector.

16 individual towers.

Total Volume 0.4 m x 0.4 m x 0.8 m

CPAD 2016 14



Assembling HCal Onsite. Feb 26, 2014. FNAL
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After 8 hours they told me
"next time let undergrads
do that”.
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Critical Tests SiPMs and APDs in Trealistic’ conditions:

Events/GeV
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You cant catch this in the test runs. Need collider environments.

CMS and PANDA didnt know about this until LHC started and trigger system

got choked!

non-isolated spikes?

Light Pipe

FEMC

SiPMs

P
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50 keV, PKA
SiPMs in principle should be immune to Nuclear Counting Effects, but what about * Large signal in APD,
* One pixel fired in SiPM

Test at STAR IP during Runié:

* FEMC equipped with dual readout to

360

compare response of SiPMs (APDs) tfo

PMT.

* High Tower (HT) Trigger for four
central towers (range 4 - 2 GeV).

CPAD 2016



SiPMs and APDs in realls’rlc condl’rlons
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STAR IP ideal test place for EIC. Well understood
conditions (measurements in 2013 thermal

neutrons, 2015 ‘MeV’ neutrons with Forward
Preshowers (FPS) SiPMs + MC).

EICRoot tuned using STAR data.

Conditions for FEMC in BeAST very close to one we
have in STAR now.

[FEMC, 2076

Neutron flux aboye 100 KeV per 1076 PYTHIA events
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FEMC, SiPMs (APDs) in realistic’ conditions (all results are Preliminary):

SiPM signal vs PMT APD/SIPM vs PMT
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* SiPMs indeed immune to NCE
* APDs ~ 40% of High Tower Triggers are due to NCE
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FEMC, SiPMs in realistic’ conditions (Preliminary):

nts

cou

B Entries 5410183
B Mean 5723
10° = RMS 0.7405
= ¥2/ ndf 7.373e+04 { 1304
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= Mean SM
10° - Sigma 0.6864#0.0003

107 £

10k

PMT, ADC

ECal, Ratio Sum SiPM to PMT

RatioSiPMtoPMT

* Fraction of signals outside 5 sigma is about 4 *10 -4
for SiPM readout.

* Origin of these signals is not clear.

Test with 2X, converter in front of SiPMs

(sensitivity to ‘shower’ particles)
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« Excess of ~ 90 pixels/GeV may be due to the
same things which produces non isolated spikes
in CMS ?

« If true (not the artifact of light collection to
PMT) this may be a problem when summing
many SiPMs (especially if detector has low LY).

* Example, FEMC HAD readoutf, Sum 8 SiPMs. 130
pixels/GeV, Test Run 2014 at FNAL.
i s

0

8 — Will this be better with two APDs ?

20



SiPMs and APDs 2016 tests. Summary:

SiPMs insensitive o NCE.

SiPMs may be sensitive to ‘showers’ (non-isolated spikes at CMS).

Depending on environment, LY from the detector, speed of light collection one sensors
may be better than the other (so far, seems, that all EM calorimeter will be better with
SiPM, HAD may be better with APD).

This may have impact on readout (timing requirement?)

Efficiency for light collection for all calorimeters need to be improved. Optimism about
dramatic improvement of PDE for SiPMs is fading away. Usage of filters should be
reconsidered. Compensation from back side with mirrors creates problems and not always
possible.

Simple way of adding more sensors to increase efficiency of light collection may create
problems.

Aiming at sensors with smaller pixels (smaller PDE, larger number of pixels) may be a
problem as well.

We'll continue these studies (more systematically) next year during 500 GeV pp Run 17
at RHIC.

This will be the best chance to study how sensors behave in conditions close to what will
be at EIC. The next such opportunity (pp Run) will be only past 2021.

Results may impact choice of design of many components of calorimeter system.



Summary 1I:

* We developed new method for construction of very
compact sampling calorimeters for EIC supported
from EIC generic detector R&D program.

* This method is now being adopted, refined, tuned etc.

at IUCF, BNL, THP and continued developement at
UCLA.

* EIC Calorimetry R&D Program allows five
undergraduate and five (seven) graduate students
participate at all stages of detector development (MC
optimizations, design, building, testing and analyzing
test run data).
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Summary 11I:
Compensation:

Are we done with it?

Rev. Sci. Instrum., Vol. 69, No. 11, November 1998
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FIG. 11. The (calculated) contribution of fluctuations in the total kinetic
energy carried by neutrons to the hadronic energy resolution of compensat-
ing Pb/plastic-scintillator calorimeters, as a function of energy (black dots).
The measured value of the irreducible fluctuations in such calorimeters i1s

indicated by the shaded area.
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FIG. 10. Hadronic energy resolution as a function of energy, for the com-
pensating SPACAL lead/plastic-scintillator calorimeter (Ref. 16).
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