Plate and Light-Guide Based Photon Detection System Design for DUNE

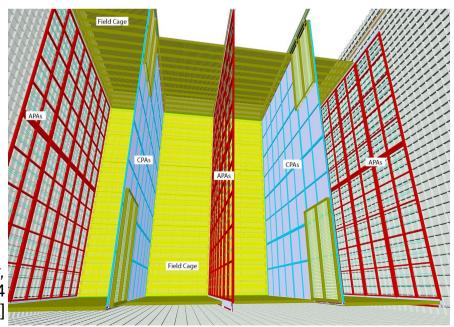
Bruce Howard for the DUNE collaboration

New Technologies for Discovery II October 9, 2016 Pasadena, CA

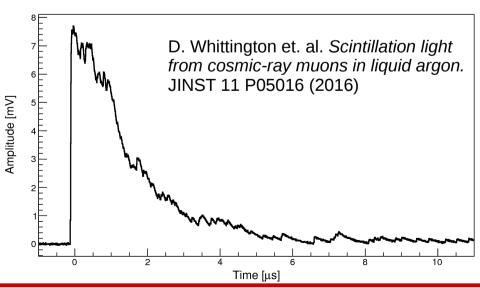
Contents

- DUNE in a nutshell
- DUNE far detector
- Scintillation of liquid argon
- Motivation of photon detector design
- Plate and light-guide based design
- Testing program
- The path forward

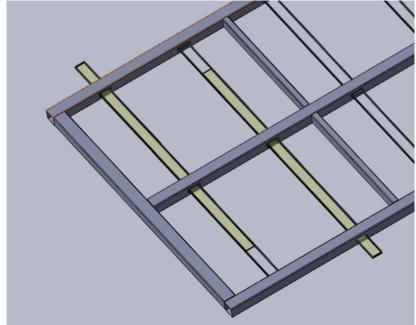
DUNE in a nutshell


- Deep Underground Neutrino Experiment
 - 40 kiloton liquid argon (LAr) time-projection chamber (TPC) far detector at Sanford Underground Research Facility in Lead, SD
 - Single- and dual-phase designs (here focus on single-phase)
 - High sensitivity to neutrino oscillation physics (CP-violating phase, mass hierarchy, etc.) via beam of neutrinos from Fermilab (1300 km baseline)
 - Also a large, sensitive detector for non-beam physics such as supernova neutrino studies and proton decay searches

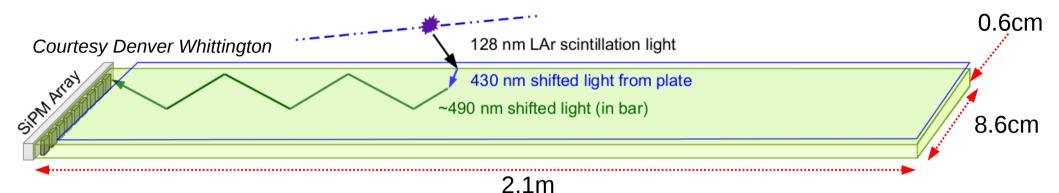
DUNE Far Detector


- 10kt single-phase far detector modules segmented into TPC volumes with anode and cathode planes
 - High-resolution tracking, dE/dx, calorimetry
- To precisely determine event time and correct for drift, a prompt signal comes in handy
 - Enter photon detectors (PDs)
 - provides prompt signal for t_0
 - Photon information essential for non-beam physics (e.g. supernova neutrinos and nucleon decay)

The DUNE Collaboration. LBNF and DUNE Conceptual Design Report, volume 4 The DUNE Detectors at LBNF. 2016. arXiv:1601.02984 [physics.ins-det]


Scintillation of liquid argon

- In addition to ionization signal, argon excites into singlet and triplet states which release photons
 - Singlet ~5ns, Triplet ~1500ns
 - High yield [e.g. T. Doke et. al. NIM A269 (1988) 291-296]
 - Yield depends on field strength [e.g. S. Kubota et. al. PhysRevB. Volume 17, number 6 (1978)], but still high
 - Challenge for PDs in LAr TPCs is to maximize spatial resolution without affecting functioning of TPC and sticking within budget/space requirements – improve photon yield (by increasing detection and cost efficiencies)
 - [B. Jones. Scintillation Light Detection in Large Liquid Argon TPCs. New Technologies for Discovery. CPAD. (2015)]


Motivation of photon detector design

- Doesn't affect TPC operation or take up active volume
 - Place detectors inside the anode plane, behind wires
 - Sensitivity to both sides of anode plane (each is a TPC volume). Large active area for detection.
- Use of light-guides to transport wavelength-shifted scintillation light to readout
 - Direct detection of VUV is difficult
 - Wavelength shifters (WLS) to convert VUV → VIS, which is easier to detect
 - e.g. tetraphenyl butadiene (TPB)
 - Silicon photo-multipliers (SiPMs) wellmatched to light-guide dimensions, relatively low voltage, robust in cryogenic environment

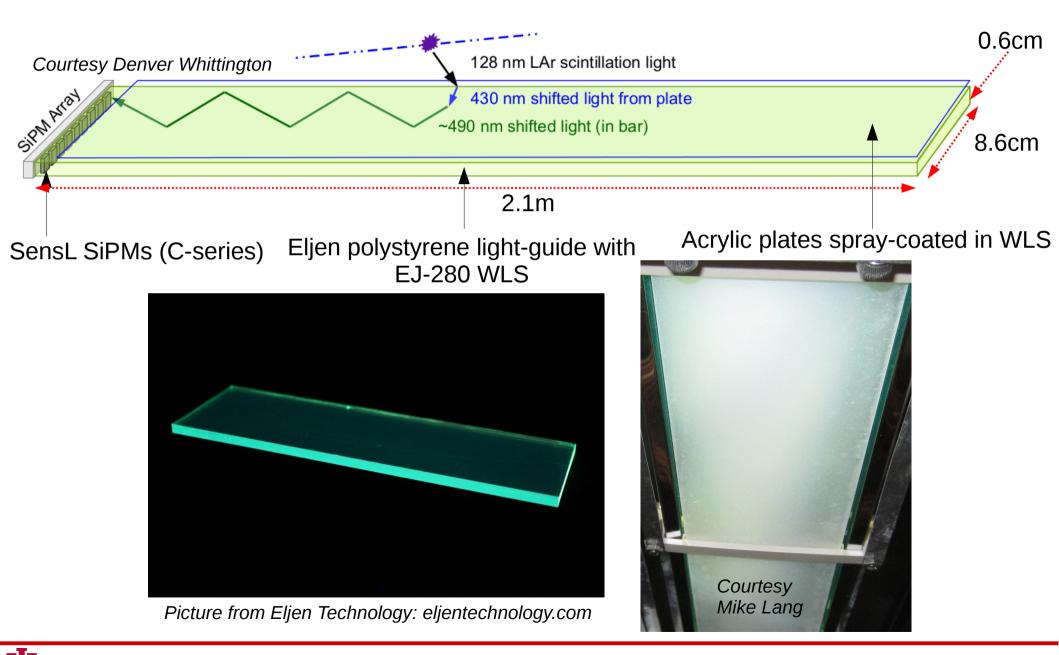
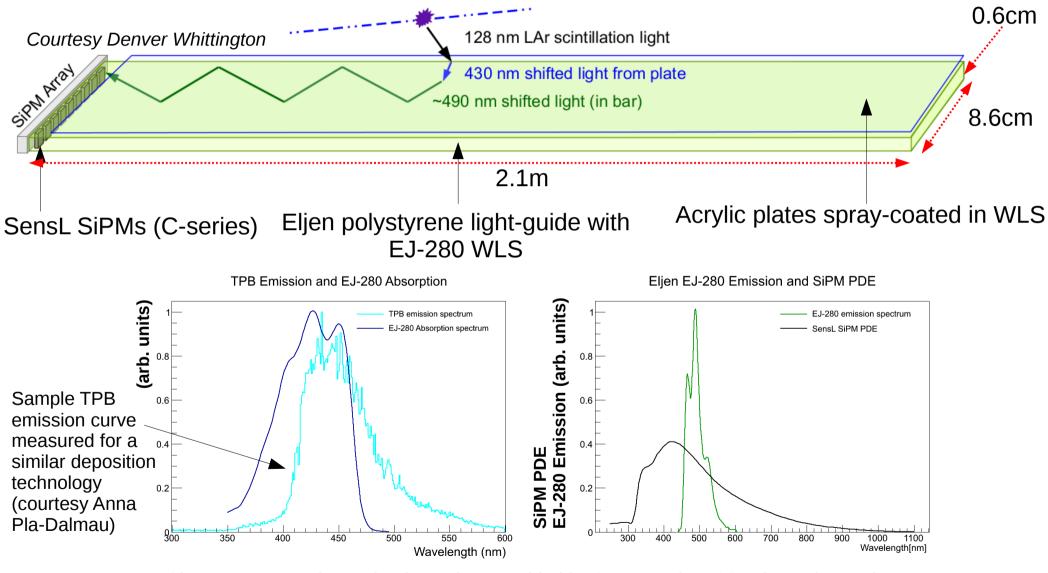
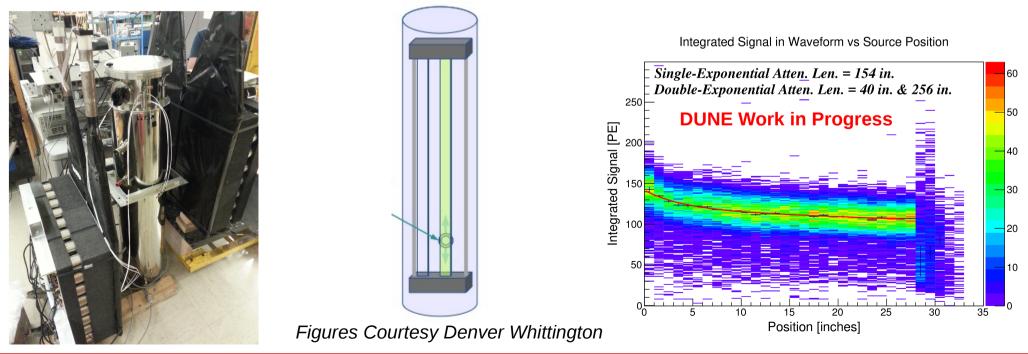

The DUNE Collaboration. *LBNF and DUNE Conceptual Design Report, volume 4 The DUNE Detectors at LBNF.* 2016. arXiv:1601.02984 [physics.ins-det]

Plate and light-guide based design



- A promising design under development at Indiana University is to place a plate coated in WLS in front and in back of a wavelength-shifting light-guide
 - While it requires a second wavelength-shift, it decouples initial $VUV \rightarrow VIS$ process from the transport (attenuation length)
 - More free to optimize plate design without impacting transport to readout
 - Use commercially-produced light-guides from Eljen
 - Long attenuation length by design

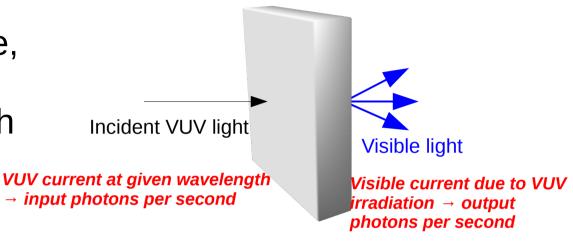
Plate and light-guide based design

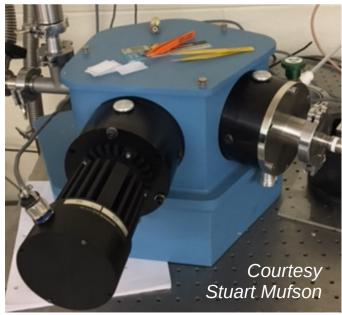

Plate and light-guide based design

SiPM PDE curve drawn thanks to data provided by SensL and EJ-280 absorption and emission curves drawn thanks to data provided by Eljen Technology.

INDIANA UNIVERSITY B. Howard – Plate and Light-Guide Based Photon Detection System Design for DUNE 9

- In addition to testing of readout components, extensive R&D work is underway incorporating tests at local and national labs to demonstrate PD technology and continue to improve performance
- IU laboratory test-benches for inspecting individual components
- Attenuation length tests: scan along EJ-280 light-guide in LAr with an alpha source behind small sample plate (travels along with the source). Consistently see attenuation lengths of order meters



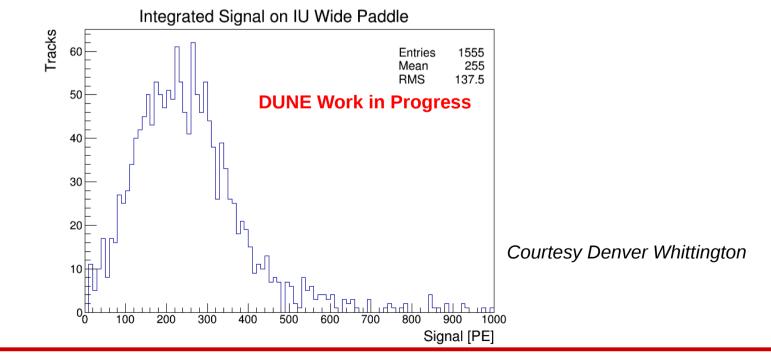

INDIANA UNIVERSITY B. Howard – Plate and Light-Guide Based Photon Detection System Design for DUNE 10

- VUV monochromator measurements
 - Procedure:

 Using VUV photodiode, measure light incident at selected VUV wavelength
Measure output light with SiPM when WLS coated plate is placed in front of output VUV

- Ratio (2)/(1) provides plate's relative efficiency (with corrections, provides absolute efficiency)
- Compare WLS application methods and plate performance

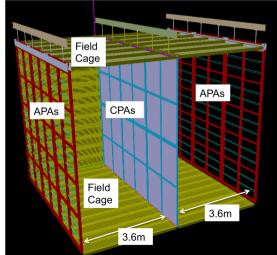
- Liquid argon test facilities at Fermilab
 - Have used the TallBo dewar to test scintillation detectors several times over past few years
 - Approximately 450 liters of LAr
 - Condenser to maintain level of LAr
 - Filtered input and purity monitors
 - Hodoscopes trigger readout on through-going cosmic-ray muons.
 - Four-fold coincidence between PMT arrays and scintillator paddles
 - Arrays of PMTs gives track info



Courtesy Denver Whittington

- Have already tested one full-width, 60" long (~1.5m) prototype at TallBo
- Tests ongoing in Blanche dewar at Fermilab
 - Blanche shorter/wider, but same infrastructure as TallBo
 - Testing full-width, 30" light-guides with improved plates selected using monochromator
 - Since we decouple attenuation length from conversion, we can test shorter prototypes
 - Further demonstrate integrated system prototypes

- Measure photoelectrons from cosmic-ray muons triggered by hodoscope
 - Relative efficiency in comparing technologies
 - Directly looking at photo-electron output
 - Estimate absolute efficiency using toy MC w/ track info to determine how many/where photons hit along the PD


INDIANA UNIVERSITY B. Howard – Plate and Light-Guide Based Photon Detection System Design for DUNE 14

The Path Forward

- Continue working on value engineering
 - Make most efficient plates possible
 - Pick best matching components
- Ensure quality control. For example:
 - Check in a dark box with LED for attenuation length/uniformity

	SiPM =	
SiPMs	Eljen light-guide	
Dark Box	LED 🔺	

- Test samples in VUV monochromator: efficiencies, uniformity
- ProtoDUNE-SP
 - Prototype LAr TPC installed at CERN. Put full-scale plate and light-guide PDs in singlephase module.

The DUNE Collaboration. *LBNF* and DUNE Conceptual Design Report, volume 4 The DUNE Detectors at *LBNF*. 2016. arXiv:1601.02984 [physics.ins-det]

Conclusions

- Detecting LAr scintillation signal in coincidence with the ionization signal in TPCs gives t_0 to locate event within detector
 - Especially valuable for non-beam physics analyses (e.g. supernova neutrinos and proton decay)
- The plate and light-guide design undergoing research and development at IU provides a decoupled approach to converting and transporting signal
 - Commercial light-guides offer long attenuation lengths
 - Improving plate design improves brightness without harming attenuation
- Liquid argon testing at Indiana and Fermilab provide test benches
 - VUV monochromator and smaller local dewar allow component testing
 - Fermilab facilities have well-understood LAr environment for integrated testing
- Plan for future includes value engineering, enhanced QC, prototype testing in protoDUNE-SP