Cold Electronics Performance in MicroBooNE Brian Kirby and Xin Qian BNL On behalf of MicroBooNE Collaboration #### **MicroBooNE** - 170 ton LAr TPC - same beam & location as MiniBooNE - new detector technology - goals: - MiniBooNE excess events - $\sigma_{\scriptscriptstyle V}$ measurements in argon - R&D for future LAr TPCs ## Principle of Single-Phase LArTPC - LArTPC has mm scale position resolution - Energy deposition and topology can be used to do PID # Collection vs. Induction Impulse Response Impulse response is for a point ionization electron - Impulse response of induction plane is smaller than that of collection plane - Bipolar nature of induction plane signal lead to suppression at low frequency, reduced signal to noise ratio for long signals ### Enabling technology: Cold Electronics - Placing the preamplifier inside LAr significantly reduced the electronics noise - 5-6 times comparing to past warm electronics (10:1 → 60:1 MIP peakto-noise ratio in the collection) - Significantly improve the performance of induction wire plane Wire Noise Level in MicroBooNE MicroBooNE Technote-1016: http://wwwmicroboone.fnal.gov/publications/publicnot es/MICROBOONE-NOTE-1016-PUB.pdf 5 #### **Before and After Excess Noise Filter** Excess noises are observed and have to be filtered # 900 kHz 'Burst' Noise and HV Power Supply Noise - * The source of 900 kHz is most likely in the PMT HV and laser interlock system - * More prominent in case of lower shaping time - More prevalent on the downstream side of the TPC - * Series of single frequency noise sources are observed, odd harmonics of 36kHz - * Highest peak (36kHz) and second highest peak (108 kHz) - V-plane is shielded by U-wires & Y-plane noise is further attenuated by V-wires - * Anode plane is very sensitive to even small potential changes at cathode (which is 2.5m away) - * Some charge got induced (capacitively coupled) on anode wire plane resulting from potential variations in cathode - * Largely removed by the filter installed on HV power supply # This harmonic noise filtered out directly in the frequency domain #### **Induction U-Plane Channel** # Low Frequency Noise from Voltage Regulator - Low frequency (10 30 kHz) coherent noise affecting groups of channels simultaneously - High correlation between channels on Mother Board pairs (1 MB = 48U +48V + 96Y) on same serviceboard (SB) with low voltage regulator for ASICs - * Correlation is slightly higher between channels on 1MB as compared to 1SB - Largely removed by the new service board upgrade ### Regulator Noise Filtration - * Subtract coherent noise using median ADC value of set of 48 channels at MB level - Before subtraction, signal region is identified and removed from the waveform - Noise level is reduced by a factor for 4-5 for the induction and 2-3 for the collection plane ### Saturation of ASICs An example U-Plane raw waveform before and after filtering - Intermittent dead regions (low RMS) on waveform when wire bias is ON - Origin is the wire motion inside LAr - * Largely reduced by changing ASIC bias current from 100 pA to 500 pA - Easily identified in the waveform and can be filtered # Reset in AC-coupled front-end ASICs due to wire motion In LAr FE ASIC I_{bias} is programmable as 100pA or 500pA (default 500pA gives ~ 60e- noise). In the new version 1nA and 5nA will also be available. ### RC Filter Response - There are two RC hardware filters in readout system with 1ms time constant - One in the intermediate amplifier - Second in the FADC - * This leads to the negative tail in the signal - Corrected through deconvolution ## **Event display** #### Impact of Excess Noise Filtering on Signal - Among all the software filters, only the coherent noise removal (10-30 Hz due to regulator) can lead to reduction of signal for track traveling parallel to the wire plane - * Small impact (MIP corresponds to 18 k electrons at 3 mm pitch) MicroBooNE Preliminary 9.08 Y-Plane 0.04 0.08 0.04 0.00 0.02 0.02 0.02 0.00 0.0 This will be reduced with new Service board upgrade! ## Summary - Pioneering cold electronics in MicroBooNE reach the expected performance - < 600 electron ENC leads to significant improvement in the induction plane signal performance - Sources of excess noise are all identified and hardware fixes are in order - Software filter is developed to successfully remove excess noise with negligible impact on signal - Stay tuned for new results from MicroBooNE