

WADE FISHER MICHIGAN STATE UNIVERSITY **On behalf of the ATLAS Collaboration**

CPAD Meeting, 9 October 2016

ATLAS TRIGGER UPGRADES

ATLAS EXPERIMENT MICHIGAN STATE Caltech RSITY

Overview

ATLAS & LHC Status and plans

Phase-1 Upgrades Strategy & Goals **Construction Progress**

HL-LHC Upgrades a.k.a. Phase-2 Upgrade Strategy & Goals Current plans and options

LHC Longterm Schedule

Wade Fisher, MSU

Upgrade Motivations

Lepton trigger rates linear with luminosity & Jet/MET triggers can be highly non-linear

- Extrapolation to high lumi yields rates incompatible with current hardware

Strong desire to maintain low trigger thresholds

- Even modest reductions in thresholds can yield significant physics gains
- Eq. lowering muon pT from $30 \rightarrow 20$ GeV gains 30-80% in acceptance for core physics interests

		2012 (50 ns, 7.8×10 ³³)	Phase I
Trigger*	Offline Thresh	Rate	
EM18VH	24 GeV	22 kHz	
MU15	25 GeV	12 kHz	
TAU40	100 GeV	7 kHz	
Rat	te Limit	~75 kHz	

ATLAS Run-2 Trigger/DAQ

Run-2 Trigger

- -New L1 Topological Processor
- -New Fast TracK (FTK) Trigger

Phase-1 Upgrades

- Improve calorimeter trigger granularity
- Additional forward muon trigger detectors

HL-LHC Upgrades

- New TDAQ system
- Upgraded calorimeter & muon detectors
- New Inner TracKer silicon strips and pixels

		Calorime
Lev	/el-1 Calo	•
	Pre-p	rocessor MCM
C	Ρ (e,γ,τ) CMX	JEP (je CM)
		-
Level	-1	

L1Topo currently being commissioned

Wade Fisher, MSU

Phase-1 Trigger Upgrade

Run-2 Trigger

- -New L1 Topological Processor
- -New Fast TracK (FTK) Trigger

Phase-1 Upgrades

- Improve calorimeter trigger granularity
- Additional forward muon trigger detectors

HL-LHC Upgrades

- New TDAQ system
- Upgraded calorimeter & muon detectors
- New Inner TracKer silicon strips and pixels

Phase-1 Strategy: Calorimeter

Current L1 Calorimeter Trigger

- Analog sums over sliding window algorithms in FPGAs
- -0.1x0.1 towers for electrons, photons, taus (EM Calo)
- 0.2x0.2 towers for jets, MET (EM+Had Calo)

CPAD Caltech, 9 October 2016

Wade Fisher, MSU

Phase-1 strategy

- Increase granularity of calorimeter information available
- Migrate HLT-style algorithms to L1 trigger
- Lower energy thresholds, improve isolation capability
- Implemented in Feature Extraction (FEX) processors

Example of potential gain via increase in granularity 70 GeV ET electron as seen in current & upgraded L1 Calo trigger

Phase-1 Upgrade: eFEX

Electron Feature Extraction (eFEX) module

- Designed to utilize more of the calorimeter shower shape information
- Migration from 0.1x0.1 trigger towers to Super-Cells with depth information

Electron-jet separation

- -Lateral R_{η} relate energy in central core to immediate surroundings
- Depth f₃ relate back sampling to whole cluster

Wade Fisher, MSU

Above: eFEX prototype

Phase-1 Upgrade: jFEX

Jet Feature Extraction (jFEX) module

- Designed to cluster and identify jets/T and calculate MET and HT
- Brings HLT-like jet algorithms to L1 hardware

Better trigger turn-on for jet and missing ET triggers

- Pileup suppression, improved jet reconstruction

Increased granularity (x4 vs Run-2)

- -0.1×0.1 trigger towers, 0.9×0.9 window
- allows flexibility in jet definition (nonsquare, Gaussian filter, ...)

Wade Fisher, MSU

Above: jFEX prototype design

Phase-1 Upgrade: gFEX

Global Feature Extraction (gFEX) module

- Inputs from entire calorimeter to provide global view
- Per-event calorimeter-wide pileup estimation for energy subtraction
- Run anti-kT like algorithms on 0.2×0.2 jet elements (R=1.0 fat jets)

Large-area jets for dedicated physics cases

- Larger trigger acceptance for boosted heavy objects
- Opens the possibility to look for jet sub-structure at the trigger level

Above: gFEX Prototype v2

Phase-1 Strategy: Muons

Current L1 Muon Trigger

- Fast Resistive Plate (RPC) and Thin Gap Chambers (TGC)
- Hardware (FPGA) pattern recognition

Trigger Rates driven by

- Resolutions (muons below the nominal threshold)
- Fakes (charged particles not associated with the collision)

Wade Fisher, MSU

CPAD Caltech, 9 October 2016

(pads) + 28k (wires)

Phase-1 strategy

- Add new forward trigger chambers
 - -New Small Wheel = Small-strip TGC + Micromegas
- Migrate HLT-style algorithms to L1 trigger
- Counteract increased forward fake rate

Phase-1 Upgrade: Muon System

Current L1 Muon Trigger

- Fast Resistive Plate (RPC) and Thin Gap Chambers (TGC)
- Hardware (FPGA) pattern recognition

Trigger Rates driven by

- Resolutions (muons below the nominal threshold)
- Fakes (charged particles not associated with the collision)

Wade Fisher, MSU

Phase-1 Upgrade: Muon System

Current L1 Muon Trigger

- Fast Resistive Plate (RPC) and Thin Gap Chambers (TGC)
- Hardware (FPGA) pattern recognition

Trigger Rates driven by

- Resolutions (muons below the nominal threshold)
- Fakes (charged particles not associated with the collision)

Wade Fisher, MSU

HL-LHC Upgrade Motivations

Studies of the light Higgs require precision at electroweak

- Higgs couplings are a window into new physics

Subtle BSM physics can only be found if the SM is well under

- Searches for physics may require low cross section prod with large backgrounds, e.g. SUSY

European Strategy report (ECFA), P5 (DOE/NSF)

- HL-LHC needs at least 3000 fb⁻¹
- -10 years at L = 7.5×10^{34} cm⁻²s⁻¹

Target thresholds at or better than Run 2

- Single electron 22 GeV
- Single muon 20 GeV
- Compare to 25 GeV in Run 2

Setting thresholds to keep total rate to 100 kHz incompatible with physics aims

- for single leptons would imply 32 GeV electron and 40 GeV muon

Wade Fisher, MSU

			Phase I I evistom	norfor
			1 Hase-1 Level-1 System	-2 –
scale			at $L = 7.5 \times 10^{54}$ cm	m ´s
		Run 1 Offline $p_{\rm T}$	Offline Threshold	Leve
	Item	Threshold [GeV]	for Phase-II Goal [GeV]	
	isolated Single e	25	22	
erstood	single μ	25	20	
CISICOU	di- γ	25	25	
cesses	di-e	17	15	
	di-µ	12	11	
	$e-\mu$	17,6	17,12	
	single $ au$	100	150	
	di- $ au$	40,30	40,30	
	single jet	200	180	
	four-jet	55	75	
	E_T^{miss}	120	200	
	$jet + E_T^{miss}$	150,120	140,125	

CPAD Caltech, 9 October 2016

HL-LHC Upgrade Motivations

Muon barrel efficiency and acceptance are crucial trigger issues for ATLAS

- Largely driven by geometrical acceptance
- Purity cannot be relaxed because of high background rates

Without changes barrel efficiency likely to be worse due to trigger chamber aging Strategy: Redundancy added into hardware trigger - in barrel add new muon trigger chambers and include precision muon detectors - in forward region include precision muon detectors (& don't forget NSW Phase-1 upgrade)

Wade Fisher, MSU

ATLAS HL-LHC Upgrade Overview

Add new readout to improve coverage and increase Muon Detectors efficiency

Replace Innermost Forward Muon Chambers

Toroid Magnets

Wade Fisher, MSU

· · · ·	15.00	-	-	
F				
				Į
				l
•				

TDAQ System Design Options

Level-0 Muon & Calo used to make initial fast rejection and identify Regions of Interest

-1 MHz accept rate, trigger latency 6 µs, minimum detector latency 10 µs

Level-1 hardware track trigger and high resolution calo data provide further rejection

DAQ /

L1Track and L0Calo/L0Muon feed to L1Global processor

- 400 kHz accept rate, trigger latency 30 µs, minimum detector latency 60 µs

Event Filter (commodity farm + HW tracking) delivers a factor 40 reduction down to output rate of 10 kHz - FTK++ full event tracking processor down to $p_T > 1$ GeV at 100 kHz

TDAQ System Design Options

Single level hardware trigger straight into Data Handler

- -L1 hardware trigger and Rol Engine relocated to EF hardware & software
- Readout less complex but less flexible
- -1 MHz accept rate, trigger latency near 6 µs, minimum detector latency around 10 µs

DAQ /

Event Filter now delivers a factor 100 reduction down to output rate of 10 kHz

- Naively a factor 2.5 larger than in two level system, at least 10 times larger than Phase-1
- EFTrack regional tracking processor alongside FTK++ full event tracking

Also looking at LO+L1 options in which lower latency is traded for higher LO accept rate

HL-LHC Level-0 Trigger

LO Calo:

- Existing Phase-1 L1Calo trigger system becomes L0Calo trigger for HL-LHC
- FEX system receives firmware upgrade; largely same hardware as Run 3

LO Muon:

- New readout and improved coverage to increase efficiency
- Latency now long enough to use precision MDTs for sharper turn on

LOTopo/Central Trigger Processor/RolEngine

- Receives trigger objects from LOCalo and LOMuon
- Performs complex trigger selections (invariant mass, missing transverse energy, etc.)
- On LO-Accept, the RolEngine calculates the Regional Readout Requests to send back to the detectors
- Rols cover at most 10% of detector => 100 kHz equivalent rate for readout

CPAD Caltech, 9 October 2016

L0CTP

HL-LHC Level-1 Track Trigger

Level-1 Track Trigger receives ITk data from regions around Rols contributing to LO-Accept

- Finds tracks in those regions above 4 GeV pT cut

- Quasi-offline resolution, reconstruction efficiency at least 95% for offline tracks
- Rejection factor of 5 for single lepton triggers, pileup track resolution $< \sim 10$ mm

Wade Fisher, MSU

Regional readout of 10% ITk in $\sim 6 \ \mu s$

- Strip front-end readout chips with double-buffer capability
- Full pixel readout at 1 MHz

FTK next-gen associative memory chip and track-fit on FPGA

- 500k track patterns per AM chip at 200 MHz
- 4 fit/ns on modern FPGA

HL-LHC Level-1 Global Trigger

40 Event Processor time-multiplexed system, better than 0.1% dead time at 1 MHz - Receives calorimeter information from every cell, LOMuon objects, L1 tracks

Input up to 8 events in parallel each taking 2 µs to arrive - Linear processing of calorimeter data on arrival, Iterative processing for calorimeter jets and MET

Global and topological selections: Tracks vital for taus and pileup suppression

Wade Fisher, MSU

- CPAD Caltech, 9 October 2016

HL-LHC Trigger Strategy

Reduction in two hardware level system at Level-1 mainly using tracks from L1Track

Lower rate triggers for multiple low-pT leptons, taus, jets and missing transverse energy

- e.g. single electron 200 kHz Level-0, 40 kHz Level-1, 2.2 kHz output
- also improvements from individual cell information for calorimeter at Level-1

In single level system Level-O rates feed directly into Event Filter

Item	Offline $p_{\rm T}$	Offline $ \eta $	LO	L1	
	Threshold		Rate	Rate	
	[GeV]		[kHz]	[kHz]	
isolated single e	22	< 2.5	200	40	
forward e	35	2.4 - 4.0	40	8	
single γ	120	< 2.4	66	33	
single μ	20	< 2.4	40	40	
di- γ	25	< 2.4	8	4	
di-e	15	< 2.5	90	10	
di-µ	11	< 2.4	20	20	
$e - \mu$	15	< 2.4	65	10	
single $ au$	150	< 2.5	20	10	
di- $ au$	40,30	< 2.5	200	30	
single jet	180	< 3.2	60	30	
large- <i>R</i> jet	375	< 3.2	35	20	
four-jet	75	< 3.2	50	25	
H_{T}	500	< 3.2	60	30	
E_T^{miss}	200	< 4.9	50	25	
$jet + E_T^{miss}$	140,125	< 4.9	60	30	
forward jet**	180	3.2 - 4.9	30	15	
Total			~ 1000	$\sim \! 400$,

Summary

ATLAS has a plan to meet the challenges of HL-LHC - Higgs, BSM and SM physics all benefit from low thresholds

Two-level hardware trigger based on Regions of Interest, also a single level option.

- Phase-I trigger provides basis for Phase-II system

Track info from inner tracker crucial in subsequent levels - Factor 5 reduction in single lepton triggers, also vital for taus and pileup suppression

- Regional tracking in either second hardware level or as coprocessor to Event Filter

Baseline will be documented in a TDR, due Q4/2017

Wade Fisher, MSU

The End

High Level Trigger Evolution

		LH	IC Rur	n 1		LS1		LHC Run 2		LS2		Run 3		LS3			Run 4 HL				
	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	5 2027	2028	2
Com	nmo	dity C	PUs								PHA	SE I				PHA	ASE II				>
		8- e.g. E5	12 core 540, E X5660	es 5420,				12-2 e.g. E5	4 cores 5-2680	s v3			2 Co-j	4+ cor oroces	es sors?				Many o Hardwa acceler	cores? are ators?	
Ever	nt pl	rocess	ing -		_																>
		Multip indepe process	le ndent ses				M wi	ultiple th shar	proces ed me	ses mory			Multi multi flight	-threa ple eve	d, ents in				Multi-t multip events	hread, le in fligi	nt
		Offline wrappe	algorit ed	thms			Of wr	fline al apped	gorithr	ns			Seam integ offlin	less ration e algor	of ithms				More th safety, paralleli optimis	iread- ism, ation	

HL-LHC Upgrade Motivations

Studies of the light Higgs boson require precision at electroweak scale

- Higgs couplings are a window into new physics

Subtle BSM physics can only be discovered if the SM is well understood

- Searches for physics may require low cross section processes with large backgrounds, e.g. SUSY

European Strategy report (ECFA), P5 (DOE/NSF) - HL-LHC needs at least 3000 fb⁻¹ (10 years at L = $7.5 \times$

Wade Fisher, MSU

$$(10^{34} \text{ cm}^{-2} \text{s}^{-1})$$

ATLAS Simulation Preliminary $\sqrt{s} = 14 \text{ TeV}: \int \text{Ldt} = 300 \text{ fb}^{-1}; \int \text{Ldt} = 3000 \text{ fb}^{-1}$

CPAD Caltech, 9 October 2016

$\Delta \mu / \mu$

Phase-1 Performance

Phase-I Upgrade Expected Performance:

	2012 Menu at Phase-I	Phase-1 2018 Me at Phase-1 L			
Trigger	Offline Usable Threshold	LI Rate	Offline Usable Threshold		
Single Electron	25	I 30 KHz	32		
Single Muon	25	I50 KHz	25		

Rates for 3x10³⁴cm⁻²s⁻¹ (from ATLAS Phase-1 TDR)

Now single lepton trigger fits in 100 KHz

Wade Fisher, MSU

HL-LHC Level-0 Muon Trigger

LOMuon

Information from precision muon chambers (MDT) and additional muon trigger chambers added to significantly improve efficiency and purity

building on existing muon trigger system and Phase-I NSW

