Light Detection with SiPMs in the nEXO Experiment

Ako Jamil for the nEXO Collaboration

Stanford University / FAU Erlangen-Nuremberg

CPAD Meeting at Caltech, 10/09/16

$0\nu\beta\beta$ - from EXO-200 to nEXO

Conceptual Design for nEXO

• Light collection on the barrel behind field shaping rings

3

SiPMs for Light Detection in nEXO

- Many pixels in parallel operated in Geiger mode
- Incident photon creates an electron that triggers an avalanche
- Current is passively quenched by a resistor
- Channel signals are added together
 - \rightarrow allows for single photon resolution

Advantages:

- High gain \rightarrow low noise
- Possible high radio-purity
- Large manufacturing capabilities
- Efficiency getting close to what we need

Light collection in nEXO

- Overall efficiency = $PDE \cdot CE$
- ~4m² of SiPMs
- Large improvement with SiPMs instead of APDs
- nEXO specification:

 $\frac{\sigma(E)}{E}$ of 1% at Q-value

SiPM Requirements for nEXO

Parameters	Value
Photo-detection efficiency at 175-178nm in liquid Xenon	≥ 15%
Radio purity: contribution of photo-detectors to the overall background	< 1%
Dark noise rate at -100°C	\leq 50 Hz/mm ²
Average number of correlated avalanches per parent avalanche at -100°C within 10 μs	≤ 0.2
Single photo-detector active area	≥ 1cm ²
Capacitance per area	< 50 pF/mm ²
Gain fluctuations + electronics noise	< 0.1 PE

Correlated Noise in SiPMs

Significance of Correlated Avalanches

Overvoltage changes everything

- Highest efficiency does NOT mean highest energy resolution
- Need to look at set of Correlated Avalanche Rate and PDE

on Observato

Latest Efficiency Measurements

Promising improvement over the past years

Open Issue – Reflectivity

sterion Observatori Sijiji Gor double beta decay

- What happens to the photons?
 - ~15% detected by SiPM (PDE)
 - ~60% expected to be reflected due to refractive index mismatch
 - Photon might be detected by another SiPM
 - Anti-reflective coating is an option
 - ~25% will be absorbed without detection
- Recent measurements showed only ~30% reflectivity
- Highly depending on surface layers and thickness
- May vary widely due to production
- Need efficiency as function of correlated avalanche rate AND reflectivity!

Calculated reflectance of an FBK SiPM as a function angle (left) and wavelength (right) for two measured values of SiO_2 extinction coefficient. In the low extinction (blue) case, ~60% of light is reflected by SiPM, which can be collected by opposing sensors. The high extinction (red) case is detrimental for nEXO.

LIXO: LIquid Xenon Optical characterization Setup

- Understanding VUV reflectivity of materials and SiPMs in LXe is critical for nEXO
- nEXO plans to study VUV reflectivity and PDE as a function of angle in LXe (UAlabama) – LIXO
- LIXO will be complementary to a more versatile vacuum setup (TRIUMF) that will probe wide range of wavelength, from VUV to IR

n

source with pinhole collimator illuminates sample at the center. Reflected light detected by array of SiPMs. Both source and SiPMs can slide along the rail.

Large Area SiPM Readout

- nEXO needs to maximize area/channel under a power/channel constraint
- Single p.e. resolution still needs to be maintained (0.1 SPE rms)
- We have investigated relation between sensor area capacitance, readout noise, power and shaping time
- We have seen that gain/capacitance is what really matters
- We can comfortably readout ~6cm²/channel with 85pF/mm²

- -100°C
- 0.5 mW/cm²
- SensL 4x4 array as one channel (parallel)
- 3 · 10⁶ gain
- 20 MHz bandwidth

3-Dimensionally integrated digital SiPM

- 3 layers (tier) system
 - Tier 1: Single Avalanche Photo-Diode Array (SPAD) with one Through-Silicon-Via (TSV) per SPAD
 - Tier 2: One guenching and avalanche counting circuit per SPAD
 - Tier 3: Data aggregator and trigger circuit. One routing "chip" and one controller chip
 - Routing chip may be a silicon interposer
- High performances with low power

50 µm Pitch

3DdSiPM for nEXO

- Advantages over analog SiPM + analog electronics
 - All in one chip assembly: photon come in, bits come out
 - Power scales with avalanche count not with capacitance
 - Allow lower power or better timing resolution and granularity
 - After-pulsing can be completely eliminated for a given time scale
 - Digital holdoff vs resistive (RC) quenching
- Challenges
 - Need custom SPAD array
 - Scaling to large area

Summary of R&D for Light Detection in nEXO

- Combine Efficiency and Reflectivity measurements in the VUV → have analog SiPM candidate(s) that meet(s) all our requirements
- Proof of principle 10×10cm² analog SiPM tile and readout electronics
- Test of SiPMs in the presence of electric field
- Investigate 3D-integrated digital SiPMs

ollaboration

C

C

nFX

0

L L

University of Alabama, Tuscaloosa AL, USA — T Didberidze, M Hughes, A Piepke, R Tsang University of Bern, Switzerland — J-L Vuilleumier Brookhaven National Laboratory, Upton NY, USA — M Chiu, G De Geronimo, S Li, V Radeka, T Rao, G Smith, T Tsang, B Yu California Institute of Technology, Pasadena CA, USA - P Vogel Carleton University, Ottawa ON, Canada — I Badhrees, Y Baribeau, M Bowcock, M Dunford, M Facina, R Gornea, K Graham, P Gravelle, R Killick, T Koffas, C Licciardi, K McFarlane, R Schnarr, D Sinclair Colorado State University, Fort Collins CO, USA — C Chambers, A Craycraft, W Fairbank Jr, T Walton Drexel University, Philadelphia PA, USA — E Callaghan, MJ Dolinski, YH Lin, E Smith, Y-R Yen Duke University, Durham NC, USA - PS Barbeau, G Swift University of Erlangen-Nuremberg, Erlangen, Germany — G Anton, R Bayerlein, J Hoessl, P Hufschmidt, A Jamil, T Michel, T Ziegler IBS Center for Underground Physics, Daejeon, South Korea - DS Leonard IHEP Beijing, People's Republic of China — G Cao, W Cen, X Jiang, H Li, Z Ning, X Sun, T Tolba, W Wei, L Wen, W Wu, J Zhao ITEP Moscow, Russia - V Belov, A Burenkov, A Karelin, A Kobyakin, A Kuchenkov, V Stekhanov, O Zeldovich University of Illinois, Urbana-Champaign IL, USA — D Beck, M Coon, S Li, L Yang Indiana University, Bloomington IN, USA — JB Albert, S Daugherty, TN Johnson, LJ Kaufman, G Visser, J Zettlemoyer University of California, Irvine, Irvine CA, USA - M Moe Laurentian University, Sudbury ON, Canada - B Cleveland, A Der Mesrobian-Kabakian, J Farine, U Wichoski Lawrence Livermore National Laboratory, Livermore CA, USA - O Alford, J Brodsky, M Heffner, G Holtmeier, A House, M Johnson, S Sangiorgio University of Massachusetts, Amherst MA, USA —S Feyzbakhsh, S Johnston, M Negus, A Pocar McGill University, Montreal QC, Canada — T Brunner, K Murray Oak Ridge National Laboratory, Oak Ridge TN, USA - L Fabris, D Hornback, RJ Newby, K Ziock Pacific Northwest National Laboratory, Richland, WA, USA - EW Hoppe, JL Orrell Rensselaer Polytechnic Institute, Troy NY, USA — E Brown, K Odgers SLAC National Accelerator Laboratory, Menlo Park CA, USA - J Dalmasson, T Daniels, S Delaquis, G Haller, R Herbst, M Kwiatkowski, A Odian, M Oriunno, B Mong, PC Rowson, K Skarpaas University of South Dakota, Vermillion SD, USA — J Daughhetee, R MacLellan Stanford University, Stanford CA, USA - R DeVoe, D Fudenberg, G Gratta, M Jewell, S Kravitz, D Moore, I Ostrovskiy, A Schubert, M Weber Stony Brook University, SUNY, Stony Brook, NY, USA - K Kumar, O Njoya, M Tarka Technical University of Munich, Garching, Germany - P Fierlinger, M Marino

Backup Slides

3DdSiPM Architecture for nEXO

<u>Interposer</u>

To the DAQ

- Same coefficient of thermal expansion
- Adjustable coincidence window
- Adjustable threshold
- A trigger is generated when:
 - Flag count > threshold
 - Inside the coincidence window
- The parallel adder of each 3DdSiPM is activated for the duration of the scintillation
- Data transmission logic

Stanford Setup for Absolute PDE

 Scintillation light from spontaneous fission of ²⁵²Cf in GXe

- Wavelength band-pass filter
- Reference PMT from Hamamatsu with calibrated efficiency at 175nm
- Teflon sphere to avoid parasitic reflections
- Black coated cylinder for

reflection-free measurments

Light Detection with SiPMs in the nEXO Experiment - Ako Jamil for the nEXO Collaboration - CPAD Meeting at Caltech

TRIUMF Setup for Correlated Avalanche Measurement

- Low light intensity: 0.1-0.15 p.e. per pulse
- Able to do correlated avalanche free measurement
 - $\langle PE \rangle = -\ln\left(\frac{N_{0L}}{N_{0D}}\right)$
 - N_{0L} : number of events with no pulses in the flash lamp window
 - N_{0D} : number of events with no pulses in a dark region

Measurements in Air vs. LXe

- Are measurements done in vacuum/gas representative for LXe?
- SiPMs are covered with a thin SiO₂ layer (FBK)
- For angles smaller than 45° the systematic error is small compared to other systematics

Source of fluctuations	APD	SiPM (2m ²)	SiPM (4m ²)
Efficiency: 12%*55% (APD) and 15% (SiPM)	1.3%	2.25%	1.57%
Dark noise fluctuation 50 Hz/mm ²	0	0.17%	0.12%
Correlated avalanche fluctuation	0	1.14%	0.80%
Gain fluctuation	1.4%	0.08%	0.06%
Electronics noise: ENCph = 198 (APD), 5 (SiPM)	3.7%	0.25%	0.18%
Total detector induced fluctuations (light only)	4.2%	2.5%	1.8%
LXe intrinsic fluctuations (light only)	5.4%	5.4%	5.4%
Light only resolution	6.84%	5.98%	5.70%
Combined with charge (800 e ⁻ noise for charge)	1.64%	1.04%	0.78%
Contribution from LXe intrinsic to combined resolution		0.04%	0.04%
Contribution from charge noise to combined resolution		0.38%	0.38%
Contribution from light noise to combined resolution		0.97%	0.68%