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Neutrino physics in a simple world

From theorists... ... to experimentalists

v Shoot a neutrino beam
into your detector

v Detect the particle
produced in the
interaction

v Reconstruct the
neutrino information
measure important
physics quantities




Neutrino physics in a more real-like world

Outgoing Lepton

. - CC: charged lepton
Incoming v

- NC: neutral lepton
- Energy unknown

- Energy to be measured
- Flavor unknown

_ »Outgoing Mesons
- Final State Interactions

- Energy?

&N
» A
@ - Identity?

Also NN lati
SO correlations A Outgoing Nucleons

and MEC happening

inside the nucleus w - Visible?

- Energy?

Credit: M. Kordosky



LAMAT at the cross-section of v-physics

More than just neutrino
detectors!

Synergy between all the
fields

Accelerator

We are in the “precision
era” of neutrino physics: a
complete characterization

of detection techniques and
secondary particle
interactions is
fundamental

Test Beam
Facility

‘Wi



The LA-IAT Mission

Executing a comprehensive
program designed to characterize

LArTPC performance and

charged particles interaction in

argon in the energy range relevant N
to the forthcoming neutrino

experiments

/"

LArIAT: The expenment the LArTPC
communily needs :



Liquid Argon Time Projection Chamber:

Neutrino interaction in LAr produces  Drift the ionization charge in a Read out charge and light
ionization and scintillation light uniform electric field produced using precision wires
and PMT's
Drift
@D D . =
Time

Induction Collection

 LArIAT

.:-.wr'.

1 Data
_-—‘/

LArIAT

""" Data

e

-

K* - ut — et Candidate

K+ —» ut— e Candidate !

Wire Number Wire Number

v 3D imaging wit{a mn v Calorimetry information v PID capabilitiés
space resolution



LArIAT's Home
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LArIAT Beamline Detectors

v WC pairs used to define particle tracks before and ok B4Ge) -100A
after the magnets —4

e
e
K

v The angle o between the two tracks determines the
momentum reconstruction

per Spill per 20MeV

3

Count

v Momentum reconstruction possible even if
information from one of the two inner WC is missing

T

118
800 1000 1200 _ 1400 1600 1800
Reconstrucied P, (MeV)

200-1400 MeV/c charged particle beam momentum range
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. ‘ Muon Range
Stack

TOF vs reconstructed momentum

-
=]

F L\ — prer : v 2 scintillator counters with 1 ns
E S0 : — Pion WEE . .
ER - wuon & sampling provides TOF
g0l .. |~ Electron ﬁ
b = v In conjunction with momentum derived
0L by MWPCs, discrimination of
o | n&p&e/K/p is possible

Reconstructed z-momentum (MeV/c)




LArIAT Beamline Detectors

n=1.11 n=1.057
Aerogel @Aerogel
200-300

MeV/c {E}“
300-400 {;}2}{% {E} n

MeV/c

v Allows to perform nt/u separation
over a range of momentum
v Currently under investigation

Muon Range
Stack

v Four layers of XY planes sandwiched between
(pink) steel slabs

v Each plane is composed by 4 scintillating bars
connected to a PMT

v Allows to discriminate nt/u exiting the cryostat
v Currently under investigation




Insivde the cryostat: TPC and light collection system

Light
Collection
System port

Pulse shaping
and amplifying 1. PMT: Hama

WirePlanes FHSsVimnEN RS

3. SiPM: SensL : 5 w/prea :
4. SiPM: Hmm. S11828- 3344M 4X4 array (Run I)
SiPM: Hmm. VUV-sensitive (Run II)

cold ASICs




Lyght Collection System

TPB

Reflector
Field Cage Wall

Credit: W. Foreman

v Wavelength shifting (evaporated) reflected

foils on the four field cage walls
v Technique borrowed from dark matter experiments

v Provides greater (~ 40 pe/MeV at zero field)
and more uniform light yield respect to
“conversion-on-PMTs-only” light systems

v R&D for future neutrino experiments as a
way to improve calorimetry and triggering

X [m]

Beam direction

Conversion-on-PM Ts only

LArAT
Photon MC
LY = 6.2 pa/MeaV

LArAT

Photon MG | §
LY =14.1 pa'MeV 10
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LArTPC

> Refurbished ArgoNeuT TPC

v 2 Readout planes

v 240 wires/plane, £60° respect to beam, 4 mm pitch

f Ir{;adout Cold Electronics .. o\ v 500 V/cm nominal drift field

—y

e —

» Cold Electronics: MicroBooNE preamplifying
ASICs on custom motherboards

v Signal to Noise ratio (MIP pulse height compared
to pedestal RMS)

> Run 1 ~50:1 (ArgoNeuT warm electronics ~15:1)
> Run 2 ~70:1

¥

~ ; «
Wixe/ Anode Plane i = A= e




Eirst Physics with CAFAT]

Our first physics measurements that put
together all the various aspects of the LArIAT

experiment

Note: | can't show all the analyses currently underway in the
time alloted, so this is just a sampling



Physics wjo the charged particle beam

s s Cosmic Ray

Y it - Using a sample _,, ™™
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Physics wjo the charged particle beam
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Physics wjo the charged particle beam
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7w —Argon Cross-Section

Muon Range
Stack

LArAT Prelirrﬂnﬂw ,
- N NS LAAAT Preliminary
8000— %2/ ndf = 305.1 /11 - r - .
- Constant 5949 +61.2 o B 5 s LArIAT Run-1 Data 7
5000 Mean 23.37+£0.01 3 10— '*+ _
E Sigma 1.077 £ 0.007 J E + + =
4000 3 : + LArIfAT prelm.unary 7
3 L LArIAT preliminary = g I +Negatwe Polarity Runs
g3000— Negative Polarity Runs — £9F ¢ t E
= | i1} E 7
2000{— - n 1. ]
1000{— — = T %THT H 3
c: . S T W B N c. ..y e
0 10 20 30 50 0 70 80 an 100 o 500 1000 1500 2000 2500
TOF (ns) WC-Track Momentum (MeV)

TPC Front Face
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7w —Argon Cross-Section

* The total #™—Argon Cross-Section includes
OTotal — Oelastic-l- O

inelastic T Och—exch Y absorp. +0 n -production

Foes : : : Charge Exchange Candidate
Elastic Scattering Candidate Inelastic Scattering Candidate

LArIAT Data LArIAT Data B LArIAT Data

Absorption Candidate (7t -> 3p)

LArIAT Data AT T AT D e ter o B

 Backgrounds are:

7t Decay Candidate st Capture Candidate 7t Decay in flight Candidate

LArIAT Data LArIAT Data LArIAT Data

Note: These backgrounds are still included in the forthcoming plots




7w —Argon Cross-Section

Event Sample Number of Events
7~ Data Candidate Sample 32.064
w/p/e 1D 15,448
Requiring an upstrecam TPC Track within z < 2cm 14,330
< 4 tracks in the first z < 14cm 9,281
Wire Chamber / TPC Track Matching 2,864
Shower Rejection Filter 2,290
™ e |y | | KT | P
Beam Composition before cuts 184 | 409 185122 | 0035 | 0.007
m ¢ 14 ol K~
Selection Efficiency | 74.5% | 3.6% | 90.0% | 0.9% | 70.6 %

-« Now we have a matched WC track and TPC
track

 We calculate the
n-candidate's initial kinetic energy as

KE,=V p*+m’—m,—Ey,

we take into account energy loss due to
material upstream of the TPC (argon, steek!
beamline detectors, etc)

Analyze the
. reconstructed tracks




7w —Argon Cross-Section

 Now that we have a wire chamber track (with an initial kinetic energy
measured from the wire chambers) matched to a TPC track, we
follow that TPC track in slices

- The slice represents the distance between each 3D point in the track

- For each slice we ask: “Is this the end of the track?”
« NO: Calculate the kinetic energy at this point and put that in our “non-interacting” histogram

« Yes: Calculate the kinetic energy at this point and put that in both the interacting and
incident histograms

Interacting

nSpts

KE =KE.— )Y dE/dX X Pitch,

Interaction

1=0

Kinetic Energy (MeV)

Incident

22



7 —Argon Cross-Section
 Repeat this process for your entire sample of &

« Use the thin slab approach and calculate the cross-section

LArAT Preliminary
\II|III|III|I\III

|||||||\||||| T T T LI
HHHHHE 7~ MC

wl W —e— Run-1 Data

Interacting histogram

1 _ 1 N interacting
nz Interacting nz N

Wheren=pN, /A

=t=_

Incident

Events / 50 MeV
~ _B. -

[ e D
(=] (=] [=] (=]
%III“II|III|III‘III|III|III|I\I|I
4 -

>
I\I|III|III|III|III|III|III‘III|III|III|I\I|I

80 Z = slab depth
Reminder:
bbb st vl Cross section still contains capture and
Reconstructed Kinetic Energy (MeV) 1 § decay processeS.
LArIAT Preliminary c ere
SRR IL T e 1 = % We are currently utilizing the data and MC
o0l |t e Run- Data ] Nz g to estimate the relative fraction of
b . o] abs/decay and employing methods to
R N B o ;
£ Incident histogram 5 remove this from our sample
~215000— -
mmmz_ _f Kinetic Energy (MeV)
5000— -
C ] 23
00 200 400 600 800 10I00 12I00 14I00 1600 ‘18|Ch!)I I é;OO

Reconstructed Kinetic Energy (MeV)



7 —Argon Cross-Section

7 O Tt T4 Systematics Considered Here
E N LArIAT Preliminary ] dE/dX Calibration: 5%
:@ - . MC syst + stat err 4 Energy Loss Prior to entering the TPC: 3.5%
:_ B 7 Through Going Muon Contamination: 3%
g 25 - MC stat err only | Wire Chamber Momentum Uncertainty: 3%
@ ) - $ Run-1data, stat err B
7]
1] B °® ° ]
s r First & — Ar cross section ]
e 15 ]
& ‘{-: F=_ measurement! ]
(=] B 7
e "H’F:i: —
0.5 ]
0 E RN R NN TR Y SN NN N M | l|-i-|| [ A B A E
0 200 400 GO0 BOO 1000 1200

Reconstructed Kinetic Energy (MeV)

* Next steps for this analysis
- Remove pion capture/decay background
- Improve energy calibration

- Investigate utilizing the Aerogel and Muon Range
Stack to remove muon contamination

24
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Slgnal tOPOIOgleS: GTot = GElastic+ GReaction
[z

or(exp.)/or(calc

Towards a K — Ar cross section measurement

20 1 g A 1 » Like for Pion, Kaon cross section never
measured on argon before, and scarcely
measured in general

» This study concentrate on K+ cross section,
given its relevance to proton decay searches in
DUNE - p -> v K+ Golden channel for proton

decay in LAr

o
©
o
I
1

| L | 1 1
500 600 700
Momentum (MeV/c)

3
Inelastic Scattering Candidate
LArIAT Datdm LAriAT Data -
Background topologies: Kaon %ecay K+->p+v, ; K+ -> m+mo _
f '
| LArIAT Data
~———+  y-shower 25

- e

st s =
.,

L D , 4
LArIAT Data - = y-shower g

.



Towards a K — Ar cross section measurement

70 —— T T

00 MeV/c?

TOF (ns)

60
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T I T T T 7T | T
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m
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8_IIII|I'III|IIIIII

10

w
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N
o

IS R R R B .| |
600 800 1000 1200
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[
400

—ry
nND

Mass (MeVic®)

 We can use beamline selections to enrich our sample ot Kaon candidates using TOF vs Pz

* Next use calorimetry within the TPC to separate interacting Kaons from Kaon decay and
proton contamination

:.2 035 -Muon @N _0.42 ;% 60 :_I T T T T T T T T T T T I T T T T | T T T T | T T T I_:
> oslpi MC s~ AR 3 LArIAT Datal
£ |k [simulation 3 L Preliminary]
L0 0251 - i
< [ o . Protons i
92 - % ]
- 301~ ap -
o15F B 5 + i
: 20— © ~ ]
0.1 C g > ]
C i 3 8 ]
ul r D ]

oosf A tag for “F S 1 A 1.

& - -=)

% éiéa ”1|0”'1|2'“1l4”'1|f; '1|3'“20 Kaondeeay! ﬂg_ = '5|' — '1|0 = '1|5 20 glrjl_nlm:;n

PIDA (MeV/cm'4?) PIDA (MeVicm' %)



Towards a K — Ar cross section measurement

LArIAT Data Preliminary Reconstruction

LArIAT Data Preliminary K* Candidate
5 Beam Direction
e
- 25
_ ig/-sh(_)wer . G %/-shgwer
i A0 IR e »
e = T
¥ S K+ I &
scatter ~"y-shower scatter «y-shower

LArIAT Data Preliminary K* Candidate LArIAT Data Preliminary Reconstruction

Beam Direction >

d
\ -shower
scatter | ffy' K+

ol Y \ - E @\\

7 i

* The analysis has demonstrated the ability to automatically
identify, tag, and reconstruct Kaon events in LArIAT

* Now working to improve our statistics in our sample and

make a measurement of the Kaon Cross-Section! 27



Conclusions

* LArIAT has recently completed two successful beam runs and has
collected a large number of charged particle events

- We have made the first inclusive pion-Argon cross-section (publication in preparation)

- Kaon identification and reconstruction has been successfully demonstrated
» Cross-section measurement forthcoming soon!

- Has begun to explore the full depth of light-augmented calorimetry capable inside a
LAITPC

* LArIAT has a large number of additional analyses in the pipeline
- p+ inclusive cross-section
- Exclusive pion cross-sections (charge exchange, elastic, absorption, etc...)

- Will also do similar measurements for other charged particle species (proton, K-, W=
separation studies, e/y characterization, etc...)

* LArIAT is preparing for a Run-Ili

- Will implement 3mm and 5mm wire pitch for detailed reconstruction studies of various
wire spacings

- Additional upgrades to the light collection system under consideration
* e.g. Implementing the ARAPUCA

- Also working in collaboration with the Bern group to explore deploying a ~500 23
channel pixel based readout for LArTPC R&D
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TPC Front Face

32



Thin-Sliced TPC Method

* Generally the survival probability of a pion

traveling through a thin slab of argon is given by
PSurViva1: e_O”Z

Where o7 IS the cross-section per nucleon and z is
the depth of the slab and n Is the density

 The probability of the pion interacting is thus
P =1-P

where we measure the probability of interacting for
that thin slab as the ratio of the number of
Interacting pions to the number of incident pions

N —O0Onz
=1—e

N Incident
April 8" 2016 FNAL Wine and Cheese Seminar | J. Asaadi | UT Arlington

Interacting Survival

interacting __ P

Interacting .



Thin-Sliced TPC Method

 Thus you can extract the pion cross-section as a
function of energy as

PInteracting =1 _(1_0 n 6Z+'")
1 1 N interacting
o(E)~—P
Interactmg N
nz nz Incident Where n=pN, /A
S d E . pioninciden i LAr Thin Slice (set by the wire pitch)
inetic energy & B scattere
[ I', (l?lj'lter:::tm; particles)
I
. / A
P— ‘ ‘ . 40 cm
—_— | | height
Mm;idert |I_ III I'l \
\ [ ] \/
"-._‘_-‘_ / - - o*

Beam Direction

Using the granularlty of the LArTPC, we can treat the
wire-to-wire spacing as a series of “thin-slab” targets if
we know the energy of the pion incident to that target

34
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Energy Corrections

KE,=Vp*+m*—m_

| Halo veto |

. || Time of Flight
(TOF)

= =
-

Events / MeV

Muon
Range
Stack

T EFlat :

¥2 | ndf

Constant
Mean
Sigma

319.3/17 —

3962 +22.3

43101 7+

7.635 £ 0.068

Gaussian Fit from
35 - 55 MeV

E

| | | | | | | |
40 60 80

—l
100 120

Energy Loss Prior to Entering the TPC (MeV)

* Adding up all the energy which a pion loses in
the region before it enters the TPC (TOF, Halo,
Cryostat, Argon) gives us the “energy loss” by
the pion in the upstream region
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Hadron - Ar interaction cross sections: w - Ar

n* scattering data on 2C

arxXiv:1405.3973 [nucl-ex]

) F T ™ U KN AR T
. i R dFSlI ]
v In the energy range of 100-500 MeV pion L T, VO — Remctio (OFS) |
. . . 400 + 12C Quasi-elastic -
interactions are dominated by A resonances ot ¢ —— Aosorpton -
e ——— Single B
E n Production 3
. . . . 300— =
v Cross section is boosted in this energy range, - E
. 250F
the same range where most of the pions O 0 Gy :
produced by few GeV v interactions lie iR N £
100F =
501 T
#mx before FSI, MC true v CCOn 05 200 400 600 800 1000 1200 1400 1600
g x10” Ll ©* Initial Momentum (MeV/c)
£ 00 — N+
: — 1t v A non-negligible fraction of pion produced in
3 400
—n"0 v CC interaction don't exit the Ar nucleus,

300

thus modifying the kinematic distribution of
final state particles

200

Pion interaction represents an
important systematic in the

B T e I R T R neutrino cross section!

number of pions before FSI, true CC with no pions in the final state

100

(=]
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Measurements with light: Michel electrons

» Michel electrons can be used for energy
calibration, PID of stopping u*
> Real-time triggering on Michel e's from stopping £ -
cosmic u's using light signals % Induction plane
£

2] e Fo
c LArIAT Preliminary Entries 68421 ]
3 L 2 I ndf 107.5 /134
~ Prob 0.9554 0
2 Constant BG 77.87+3.23
= C.. 1345 +32.2
Q 1ot C. 953.1+48.8
O i u* lifetime [ns] (fixed) 2197 +0.0

K w lifetime [ns] 650.2+51.8

i - Data ' Voo ro

i — Overall fit . l/tu- e gl/‘cfreei +: l/tcapture E

- ------ Background e P LT EEEEE LT

i e 1t (free)

~+e+ U (muonic Ar) T,..= 2197 ns (fixed)
T =918 * 109 ns
capture
e ' ) | Early results agree w/ recent

S S e emeeeneeed measurement! (854 £ 13 ns) and

_IIIIIIII.‘1IIIIIIIIIIIIIIIIIIIIIIII‘"LIIII ° ° 2

0 1000 2000 3000 4000 5000 6000 7000 theory prediction® (851ns)

At [ns] ((Klinskih et al., 2008)

2(Suzuki & Measday, 1987)
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Event selection: reduction table

Event Sample Number of Events

Single beamline particle fully reconstructed 187463
# tracks > 0 in first 2 cm TPC && < 5 in first 14 cm 117710
Unique WC — TPC track matching 70801
TOF cut 28303
PIDA cut 8231
Invariant Mass Cut 882
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