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Galaxy Rotation Curves
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expect slow orbits at high 
radius

orbits at high radius are 
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Galaxy Velocities in Clusters
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Coma Cluster
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Models of Structure Formation
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Springel, Nature (2006)
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Fits to Cosmic Microwave Background
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Planck 2013
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The ΛCDM Model of Cosmology
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Planck 2013

One model has 
emerged that fits all 
the observations 
with only 6 
parameters.



Enectali Figueroa-Feliciano \ CPAD \ Oct 2016

0.03%

Free H & He 
4%

Dark Matter 
27%

Dark Energy 
68%

Dark Energy
Dark Matter
Free H & He
Stars and Gas
Neutrinos
Heavy Elements (Us)

We don’t know what 95% of the 
Universe if made of! 

The ΛCDM* Model of Cosmology
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This model raises some truly 
fundamental physics 
questions: 

What is Dark Matter? 
What is Dark Energy?

*Might be ΛWDM…
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What we Know about Dark Matter
• There is a Missing Mass Problem: 

• Dynamics of stars, galaxies, and clusters 
• Rotation curves, gas density, gravitational lensing 
• Large Scale Structure formation 

• There is Wealth of evidence for a particle 
solution 

• MOND has problems with weak lensing and CMB  
• Microlensing (MACHOs) mostly ruled out 

• Dark Matter is Non-baryonic     
• Height of acoustic peaks in the CMB (Ωb, Ωm) 
• Power spectrum of density fluctuations (Ωm) 
• Primordial Nucleosynthesis (Ωb) 

• And its STILL HERE! 
• Stable (or extremely long-lived), neutral, non-

relativistic 
• Interacts via gravity and (maybe) some sub-weak 

scale force
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Planck 2013

Sun

Klypin+ 2002
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Dark Matter may be a Rosetta Stone!

9

We know the Standard Model is 
incomplete.

Where does dark matter fit in?
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We know the Standard Model is 
incomplete.

Where does dark matter fit in?
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And how does it fit into a more general 
understanding?

Dark Matter may be a Rosetta Stone!

10
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A Beautiful Problem in Physics
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40 Orders of Magnitude!
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Theories of 
Dark Matter

mSUGRA

R-parity
Conserving

Supersymmetry

pMSSM

R-parity
violating

Gravitino DM

MSSM NMSSM

Dirac
DM

Extra Dimensions

UED DM

Warped Extra 
Dimensions

Little Higgs

T-odd DM

5d

6d

Axion-like Particles

QCD Axions

Axion DM

Sterile Neutrinos

Light
Force Carriers

Dark Photon

Asymmetric DM

RS DM

Warm DM

?

Hidden
Sector DM

WIMPless DM

Littlest Higgs

Self-Interacting
DM
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T Tait
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Dark Matter Menu

• Axions 

• Axion-like Particles 

• Hidden Sector Particles 

• Sterile Neutrinos 

• WIMPs 

• SuperWIMPs 

• Solitons 

• KK excitations 

• Gravitinos 

• And many more that can fit the bill...
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  Dark 
 Matt 
Café

no, we don’t 
serve quark soup!
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The Hunt for Dark Matter
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χ χ

q q
q~

Relic 
annihilation or 
decay in the 

cosmos 
INDIRECT 

DETECTION

FERMI-GLAST

Relic Dark 
Matter 

Interacting in a 
Lab Experiment 

DIRECT 
DETECTION

LHC

man-made COLLIDER 
production

χ χ

covered by  

Simona MURGIA covered by  

Antonio BOVEIA

covered by  

David TANNER 

& Scott HERTEL



Enectali Figueroa-Feliciano \ CPAD \ Oct 2016

LHC: a Dark Matter Factory?
• Dark matter could be produced at the LHC 

• If they are produced with visible SM particle(s) Xi, one can 
search for “mono-X” or ET + X reactions   

• Can use contact interaction operators in an EFT framework 
(assuming heavy mediators), or use benchmark simplified 
models.

15

covered by  

Antonio BOVEIA
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Indirect Detection

• Dark matter annihilation, 
decay, or scattering can 
produce SM particles that 
can be detected on Earth by 
ground based and space-
based instruments 

• Fermi LAT data has been 
leading the way, but positron 
excesses and X-ray signals 
have received much 
attention too. 
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FERMI, 
Pamela
HESS, VERITAS, 
Magic

AMS-02 
CALET Chandra, 

XMM-Newton

covered by  

Simona MURGIA
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Nuclear
Recoils

Dark Matter Detection Channels
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      Sterile
ν’s WIMPsAxionsALPs

Dark Matter Detection Channels
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Nuclear
Recoils

Electron
Recoils

Hidden Sector Particles

��� ��� ��� μ�� ��� �� ��� ��� ��� ��� ���
���� ������ ����

��-�� ��-�� ��-�� ��-�� ��-�� ��-�� ��-� ��� ��� ��� ���
��� �������� ������ ������ [��]

���� ���� ���� ���� ���� ���� ��� ��� ��� ��-� ��-�
���� ������ �������� ������� ��� �����



Enectali Figueroa-Feliciano \ CPAD \ Oct 2016

Hidden Sector Particles

      Sterile
ν’s WIMPsAxionsALPs

Coherent/Resonant
Detection

Dark Matter Detection Channels
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Nuclear
Recoils

Electron
Recoils
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Tim TAIT
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Nuclear Recoils
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WIMPs, etc.

covered by  

Scott HERTEL
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The WIMP Miracle

21
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The Dark Matter Wind

• Dark matter apparently blows from Cygnus 

• Our speed relative to the dark matter halo 
is ~220 km/s 

• ~100,000 particles/cm2/sec 

• About 20 million/hand/sec

22
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astrophysics 
properties 

nuclear 
structure

particle  
theory

WIMP Spin-Independent Recoil Spectrum
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Summary of Nuclear Recoil Direct Detection Requirements

24

1:  Large Exposure (Mass x Time)

2:  Low Energy Threshold

3:  Low Backgrounds

4:  Discrimination between Signal and Backgrounds

��� ��� ��� μ�� ��� �� ��� ��� ��� ��� ���
���� ������ ����
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Typical backgrounds

Neutron: NOT distinguishable from WIMP 

Alphas: almost always a surface event 

Recoiling parent nucleus: yet another 
surface event

NUCLEAR RECOILS (NR)WIMPs and neutrons 
scatter from the atomic 
nucleus

Gamma: Most prevalent background 

Beta: on the surface or in the bulk

ELECTRON RECOILS (ER)

Photon and electrons 
scatter from the atomic 

electrons

25

Most backgrounds are from trace radioactivity (U, Th, K contamination) or induced 
by cosmic rays (cosmogenic background)
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Where to locate your experiment
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Most experiments use the earth as shielding from muons.  The lower the muon 
rate, the lower the fast neutron rate.   

m.w.e. = meters 
water equivalent
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Separating Signal from Background…

• By Detector Response 
• Obtain particle identification from the physics 

of the detector response to different types of 
particle interactions. 

• By Astrophysical Modulation 
• Annual Modulation in the WIMP recoil 

spectrum. Earth’s velocity through the 
galactic halo is max in June, min in 
December (DAMA/LIBRA). 

• Daily modulation of the incident WIMP 
direction. Measure the direction of the short 
track produced by nuclear recoil. (DM-TPC) 

• Can be Event-by-Event or Statistical

27
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Phonons 
10 meV/ph

100% energy

Ionization 
~ 10 eV/e

20% energy

Scintillation  
~ 1 keV/γ

few % energy

Particle ID Through Detector Response
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Diurnal Modulation (a.k.a. Directional Detection)

29

v0: solar motion

The mean recoil 
direction rotates over 
one sidereal day

α

v0

WIMP WIMP

Nuclear recoil

The distribution of the angle α 
between the solar motion and 
recoil directions: peaks at α=180o

WIMPs WIMPs

Low pressure TPC’s 
preserve dE/dx profile 

such that “head to tail” 
measurement can be 

made
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Current Limits

30
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Projections for Second Generation DM Searches (G2)
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Electron Recoils

32
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covered by  

Scott HERTEL 

& Matt PYLE
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How do we look for DM with electron recoils?
• Pretty much all experiments 

that look for nuclear recoils 
also see electron recoils! 

• Single electron sensitivity 
expected in both liquid noble 
and crystal experiments. 

• The main issues are threshold, 
fiducialization, and lowering 
backgrounds. 

• Using materials with a band 
gap or even quasiparticles in 
superconductors can 
drastically reduce the 
threshold!

33
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Hochberg et al. 1504.07237
see also Essig et al. 1108.5383
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Coherent / Resonant Detection

34
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Bosonic Dark Matter

35

��� ��� ��� μ�� ��� �� ��� ��� ��� ��� ���
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What kind of Bosons?

Spin 0 
Axions and other  
Goldstone Bosons

Spin 1 
Hidden Photon or  
other Vector Field

pseudoscalar vector

Slide From Surjeet Rajendran
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Axions and ALPs

• It’s a pseudoscalar (π°-like), extremely light and weakly 
coupled 

• The axion couples extraordinarily weakly to normal particles, 
including a very feeble 2γ coupling.

36

Axions constituting our local 
galactic halo would have huge 
number density ~1014 cm-3

gaγγ

gaγγ ∝  ma

The lighter the axion,
the weaker its couplings.

viable theories natural and
elegant theories

Theories with
dark matter axions

Ann Nelson
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Variety of Experiments
• Microwave Cavities 

• Low noise amplifiers (ADMX) and Rubidium Atoms (CARRACK) 

• Look for dark matter axions (low mass) converting to photons in 
B-Field 

• Solar Observatories 
• X-Ray (CAST) and Germanium detectors 

• Look for axions generated from the sun 

• Higher coupling required than for DM axions. 

• Lab experiments 
• Photon regeneration and polarization changes (PVLAS) 

• Look for production of axions from light passing through 
B-field 

• Higher coupling required. 

• Ultralight axions (nano-eV) 

• (NMR / LC Circuit)

37

CARRACK

axion X-ray

CAST

PVLAS
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The Axion Dark Matter eXperiment (original concept from P. Sikivie)

38

Halo	axions	convert	into	
microwave	photons	inside	
a	RF	cavity	threaded	by	a	
strong	magnetic	field

ADMX	is	sensitive	to	
sub-yoctowatts	of	
microwave	power

New	ADMX	experiment	
insert	fabricated	and		
being	assembled

Dilution	refrigerator	
and	quantum-limited	
amplifiers	provide	
sensitivity	for	the	ADMX	
“Definitive	Search”

G2 Funded Experiment
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G2 ADMS Search Capability

39

The	dilution	refrigerator	in	ADMX	
significantly	speeds	the	dark-
matter	search,	so	that	…

…	ADMX	has	the	sensitivity	to	either	
detect	the	dark-matter	QCD	axion	or	
reject	the	hypothesis	at	high	
confidence.	This	is	called	the	
“Definitive	Search”.

U. Washington, LLNL, U. Florida, U.C. 
Berkeley, National Radio Astronomy 
Observatory, Sheffield U., Yale U., U. 
of Colorado

   (+ new collaborators soon)
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New Ideas to search for Hidden Photons

40

Chaudhuri+ 1411.7382

Dark Matter Radio Station
Search for Hidden Photons 
with a large Spherical Mirror

Budker+ 1306.6089

Döbrich+ 1510.05869
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Hidden Photon Searches

41
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Coherent/Resonant
Detection

Nuclear
Recoils

Electron
Recoils

��� ��� ��� μ�� ��� �� ��� ��� ��� ��� ���
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Conclusions
• Although WIMPs remain a very interesting dark matter candidate, other 

scenarios are gaining traction in the theoretical community, while new ideas 
for direct searches have been proposed and are gaining momentum. 

• To make progress in the field, more collaboration between the LHC, indirect 
detection, and direct detection communities is essential. 

• The next ten years will be very exciting for dark matter direct detection. 
Various G2 Experiments will come online, covering a lot of new parameter 
space. The new directions for dark matter detection require investments in 
technology R&D! Exciting opportunities for new parameter space await!

42

Hidden Sector Particles

      Sterile
ν’s WIMPsAxionsALPs


