The Nature of Dark Matter

Enectalí Figueroa-Feliciano Northwestern

Galaxy Rotation Curves

orbits at high radius are *faster* than expected

Speed

radius

N

2

Galaxy Velocities in Clusters

Coma Cluster

Models of Structure Formation

4

Fits to Cosmic Microwave Background

The ACDM Model of Cosmology

Enectali Figueroa-Feliciano \ CPAD \ Oct 2016

The ACDM* Model of Cosmology

Enectali Figueroa-Feliciano \ CPAD \ Oct 2016

What we Know about Dark Matter

- There is a Missing Mass Problem:
 - Dynamics of stars, galaxies, and clusters
 - Rotation curves, gas density, gravitational lensing
 - Large Scale Structure formation
- There is Wealth of evidence for a particle solution
 - MOND has problems with weak lensing and CMB
 - Microlensing (MACHOs) mostly ruled out
- Dark Matter is Non-baryonic
 - Height of acoustic peaks in the CMB (Ω b, Ω m)
 - Power spectrum of density fluctuations (Ω m)
 - Primordial Nucleosynthesis (Ωb)
- And its STILL HERE!
 - Stable (or extremely long-lived), neutral, non-relativistic
 - Interacts via gravity and (maybe) some sub-weak scale force

Dark Matter may be a Rosetta Stone!

We know the Standard Model is incomplete.

Where does dark matter fit in?

Dark Matter may be a Rosetta Stone!

We know the Standard Model is incomplete.

Where does dark matter fit in?

And how does it fit into a more general understanding?

Enectali Figueroa-Feliciano \ CPAD \ Oct 2016

A Beautiful Problem in Physics

Enectali Figueroa-Feliciano \ CPAD \ Oct 2016

40 Orders Or Magnitude!

Enectali Figueroa-Feliciano \ CPAD \ Oct 2016

Dark Matter Menu

- Axions
- Axion-like Particles
- Hidden Sector Particles
- Sterile Neutrinos
- WIMPs
- SuperWIMPs
- Solitons
- KK excitations
- Gravitinos
- And many more that can fit the bill...

The Hunt for Dark Matter

LHC: a Dark Matter Factory?

- Dark matter could be produced at the LHC
- If they are produced with visible SM particle(s) X_i, one can search for "mono-X" or E_T + X reactions
- Can use contact interaction operators in an EFT framework (assuming heavy mediators), or use benchmark simplified models.

Indirect Detection

- Dark matter annihilation, decay, or scattering can produce SM particles that can be detected on Earth by ground based and spacebased instruments
- Fermi LAT data has been leading the way, but positron excesses and X-ray signals have received much attention too.

covered by Símona MURGIA

No

statistics

Satellites:

Low background

but low statistics

Spectral lines:

uncertainties, good

source ID, but low

astrophysical

and good source ID,

Galactic center: Good statistics but source confusion/diffuse background

Extragalactic:

Large statistics, but astrophysics, Galactic diffuse background

Galaxy clusters: Low background but low statistics

Enectali Figueroa-Feliciano \ CPAD \ Oct 2016

Dark Matter Detection Channels

Hidden Sector Particles

	ALPs		Axions		Sterile V's		WIMPs			
feV	peV	neV	μeV	meV Dark	eV x Matter N	keV Mass	MeV	GeV	TeV	PeV
10 ⁻⁴⁶	10 ⁻⁴⁰	10-34	10 ⁻²⁸ Max	10^{-22} K Recoil I	10 ⁻¹⁶ Energy in	10 ⁻¹⁰ Silicon	10 ⁻⁴ [eV]	102	10 ⁵	10 ⁵
10 ²⁶	10 ²³	10 ²⁰	10 ¹⁷ Dark	10 ¹⁴ Matter Pa	10 ¹¹ article De	10 ⁸ ensity per	10 ⁵ c Liter	102	10 ⁻¹	10-4
								N R	uclear ecoils	•

Dark Matter Detection Channels

Hidden Sector Particles

	ALPs		Axions			Sterile V's		WIMPs		
feV	peV	neV	μeV	meV Dark	eV Matter N	keV Mass	MeV	GeV	TeV	PeV
10^{-41}	10^{-35}	10^{-29}	10^{-23}	10^{-17}	10^{-11}	10 ⁻⁵	10 ⁰	10 ¹	10 ¹	10 ¹
Max Electron Recoil Energy [eV]										
10 ²⁶	10 ²³	10 ²⁰	10 ¹⁷	10 ¹⁴	10 ¹¹	10 ⁸	10 ⁵	102	10 ⁻¹	10 ⁻⁴
			Dark	Matter Pa	article De	ensity per	Liter			
						Ele	ectron	N R	uclear ecoils	

Dark Matter Detection Channels

Hidden Sector Particles										
	ALPs		Axions		Sterile V's		WIMPs			
feV	peV	neV	μeV	meV Dark	eV Matter]	keV Mass	MeV	GeV	TeV	PeV
10 ⁻⁴¹	10 ⁻³⁵	10 ⁻²⁹	10 ⁻²³ Ma	10 ⁻¹⁷ x Electro	10 ⁻¹¹ n Recoil	10 ⁻⁵ Energy [10 ⁰ [eV]	10 ¹	10 ¹	10 ¹
10 ⁻¹⁰	10 ⁻⁹	10 ⁻⁸	10 ⁻⁷ Mean	10 ⁻⁶ Distance	10 ⁻⁵ e Betwee	10 ⁻⁴ n Particle	10^{-3} es [m]	10 ⁻²	10 ⁻¹	100
10 ¹² cover Asm	10 ⁹ ed by ina Ar Cohe	10 ⁶	10 ³ Example 2 Dark Con	10 ⁰ Matter P	10 ⁻³ article W	10 ⁻⁶ avelengt Ele Re	10 ⁻⁹ h [m] co tr ectron ecoils	10 ⁻¹² vered by im TAIT N R	10 ⁻¹⁵ uclear ecoils	10 ⁻¹⁸

Enectali Figueroa-Feliciano \ CPAD \ Oct 2016

Nuclear Recoils

Enectali Figueroa-Feliciano \ CPAD \ Oct 2016

The WIMP Miracle

The Dark Matter Wind

Solar motion is in the direction of Cygnus

- Dark matter apparently blows from Cygnus
- Our speed relative to the dark matter halo is ~220 km/s
- ~100,000 particles/cm²/sec
- About 20 million/hand/sec

WIMP Spin-Independent Recoil Spectrum

Differential Rate [dru], m $\chi = 100 \text{ GeV}/c^2$, $\sigma = 1. \times 10^{-45} \text{ cm}^2$ dR/dEr [counts/10kg/keV/year]

Enectali Figueroa-Feliciano \ CPAD \ Oct 2016

- 1: Large Exposure (Mass x Time)
- 2: Low Energy Threshold
- 3: Low Backgrounds
- 4: Discrimination between Signal and Backgrounds

Most backgrounds are from trace radioactivity (U, Th, K contamination) or induced by cosmic rays (cosmogenic background)

ELECTRON RECOILS (ER)

Gamma: Most prevalent background Beta: on the surface or in the bulk

<u>NUCLEAR RECOILS (NR)</u>

Neutron: NOT distinguishable from WIMP Alphas: almost always a surface event Recoiling parent nucleus: yet another surface event

Where to locate your experiment

Most experiments use the earth as shielding from muons. The lower the muon rate, the lower the fast neutron rate.

Separating Signal from Background...

• By Detector Response

• Obtain particle identification from the physics of the detector response to different types of particle interactions.

• By Astrophysical Modulation

- Annual Modulation in the WIMP recoil spectrum. Earth's velocity through the galactic halo is max in June, min in December (DAMA/LIBRA).
- Daily modulation of the incident WIMP direction. Measure the direction of the short track produced by nuclear recoil. (DM-TPC)
- Can be Event-by-Event or Statistical

Particle ID Through Detector Response

Diurnal Modulation (a.k.a. Directional Detection)

Current Limits

Projections for Second Generation DM Searches (G2)

Electron Recoils

How do we look for DM with electron recoils?

- Pretty much all experiments that look for nuclear recoils also see electron recoils!
- Single electron sensitivity expected in both liquid noble and crystal experiments.
- The main issues are threshold, fiducialization, and lowering backgrounds.
- Using materials with a band gap or even quasiparticles in superconductors can drastically reduce the threshold!

neV

μeV

peV

feV

Coherent / Resonant Detection

Bosonic Dark Matter

Axions and ALPs

- It's a pseudoscalar (π°-like), extremely light and weakly coupled
- The axion couples extraordinarily weakly to normal particles, including a very feeble 2γ coupling.

The lighter the axion, the weaker its couplings.

Axion Mass 'Window'								
$10^{-(5 \text{ to } 6)} \text{ eV} < m_a < 10^{-(2 \text{ to } 3)} \text{ eV}$								
(Overclosure)	(SN1987a)							
With lower end of window								
preferred if Ω _{CDM} ~ 1								

Axions constituting our local galactic halo would have huge number density ~10¹⁴ cm⁻³

Variety of Experiments

- Microwave Cavities
 - Low noise amplifiers (ADMX) and Rubidium Atoms (CARRACK)
 - Look for dark matter axions (low mass) converting to photons in B-Field
- Solar Observatories
 - X-Ray (CAST) and Germanium detectors
 - Look for axions generated from the sun
 - Higher coupling required than for DM axions.
- Lab experiments
 - Photon regeneration and polarization changes (PVLAS)
 - Look for production of axions from light passing through B-field

Fabry-Perot

Magnet

- Higher coupling required.
- Ultralight axions (nano-eV)
- (NMR / LC Circuit)

G2 Funded Experiment

Halo axions convert into microwave photons inside a RF cavity threaded by a strong magnetic field

ADMX is sensitive to sub-yoctowatts of microwave power

New ADMX experiment insert fabricated and being assembled

Dilution refrigerator and quantum-limited amplifiers provide sensitivity for the ADMX "Definitive Search"

G2 ADMS Search Capability

U. Washington, LLNL, U. Florida, U.C. Berkeley, National Radio Astronomy **Observatory, Sheffield U., Yale U., U.** of Colorado (+ new collaborators soon)

> The dilution refrigerator in ADMX significantly speeds the darkmatter search, so that ...

10

10⁻⁶

10⁻⁸

10⁻¹⁰

Laser Experiments

Solar-Magnetic

Telescope

Solar-Germanium

HB Stars

New Ideas to search for Hidden Photons

Search for Hidden Photons with a large Spherical Mirror Döbrich+ 1510.05869

Enectali Figueroa-Feliciano \ CPAD \ Oct 2016

Hidden Photon Searches

Enectali Figueroa-Feliciano \ CPAD \ Oct 2016

Conclusions

- Although WIMPs remain a very interesting dark matter candidate, other scenarios are gaining traction in the theoretical community, while new ideas for direct searches have been proposed and are gaining momentum.
- To make progress in the field, more collaboration between the LHC, indirect detection, and direct detection communities is essential.
- The next ten years will be very exciting for dark matter direct detection. Various G2 Experiments will come online, covering a lot of new parameter space. The new directions for dark matter detection require investments in technology R&D! Exciting opportunities for new parameter space await!

Hidden Sector Particles

