

Measurement of W boson mass at $\mathsf{D} \emptyset$

Junjie Zhu State University of New York at Stony Brook

Fermilab Users Meeting June 3rd, 2009

Thank you!

• An award for the whole DØ collaboration

- High precision measurement, needs excellent understanding of the DØ detector
- Thought it was hopeless to do the DØ W mass measurement in Run II before 2005
- It took many people many years' hard work to make this measurement possible

Special thanks to:

- The W mass working group
- ◆ The electroweak physics group
- The calorimeter operation and calibration groups
- Mentors and others that I have worked with
- University of Maryland (Sarah Eno, Nick Hadley, Marco Verzocchi) and Stony Brook (Paul Grannis, John Hobbs, Bob McCarthy)

W boson mass

W boson mass

 M_W can be increased by up to 250 MeV in MSSM

2009-06-03

Higgs mass constraints

2009-06-03

Junjie Zhu

Junjie Zhu

m, [GeV]

Y

X

March 2009

y

- Three observables: $p_T(e)$, $p_T(v)$ (inferred from missing transverse energy), transverse mass $M_T^2 = (E_{Te} + E_{Tv})^2 |p_{Te} + p_{Tv}|^2$
- ◆ Develop a parameterized MC simulation with parameters determined from the collider data (mainly Z→ee events)
- ♦ Generate MC templates with different input W mass values, compare with data distributions and extract M_w
- Z \rightarrow ee events are used to set the absolute electron energy scale, so we are effectively measuring M_W/M_Z

- Crucial to understand the calorimeter response to the electron (~40 GeV) and the recoil system (~ 5 GeV)
- To measure M_W with an uncertainty of 50 MeV:
 - ♦ Need to understand the electron energy scale to 0.05%
 - Need to understand the recoil system response to <1%

Uranium-LAr calorimeters

Calorimeter calibration (I)

- Calorimeter calibration: ADC \rightarrow GeV
- **Electronics calibration using pulsers:**
 - inject known electronics signal into preamplifier and equalize readout electronics response
- o-intercalibration for both EM and HAD calorimeters
 - Unpolarized beams at the Tevatron
 - Energy flow in the transverse plane should not have any azimuthal dependence Red: average
 - Use inclusive EM and jet collider data

- EM: Use $Z \rightarrow ee$ events
- HAD: Use γ +jet and di-jet events

Calorimeter calibration (III)

- Electrons lose ~15% of energy in front of the calorimeter
- Amount of dead material determined using electron EMFs
 - Exploit longitudinal segmentation of EM calorimeter
 - Fraction energy depositions (EMFs) in each EM layer are sensitive to the amount of dead material
- Amount of missing material in the Geant MC simulation: (0.16 ± 0.01) X₀

Junjie Zhu

22

Parameterized MC simulation

- Interfaced with latest MC event generators (ResBos+Photos)
- Detector simulation: Electron simulation, Recoil system simulation, Correlations between electron and the recoil system
- Mass templates generation
- Make sure we understand Z events before we look at W events

Parameterized MC simulation

- Interfaced with latest MC event generators (ResBos+Photos)
- Detector simulation: Electron simulation, Recoil system simulation, Correlations between electron and the recoil system
- Mass templates generation
- Make sure we understand Z events before we look at W events
- Central value blinded until the analysis was approved by D0
- Closure test done using full MC simulation

Doing a blind analysis does not mean doing an analysis blindly...

Z invariant mass (M_{ee}) , 18k

W transverse mass (M_T) , 500k

 $M_z = 91.185 \pm 0.033$ (stat) GeV $M_w = 80.401 \pm 0.023$ (stat) GeV

 $(WA M_z = 91.188 \pm 0.002 GeV)$

 $M_w = 80.400 \pm 0.027$ (stat) GeV

Uncertainties

		$\sigma(m_W)$ MeV	
Source	m_T	p_T^e	E_T
Electron energy calibration	34	34	34
Electron resolution model	2	2	3
Electron energy offset	4	6	7
Electron energy loss model	4	4	4
Recoil model	6	12	20
Electron efficiencies	5	6	5
Backgrounds	2	5	4
Experimental Subtotal	35	37	41
PDF	9	11	14
QED	7	7	9
Boson p_T	2	5	2
Production Subtotal	12	14	17
Total Systematic	37	40	44
Statistical	23	27	23
Total	44	48	50

W boson mass

Use BLUE method to combine three results

$M_w\text{=}80.401\pm0.043~GeV$

- Most precise measurement from one single experiment to date
- Expect the Tevatron combined uncertainty to be smaller than the LEP combined uncertainty for the first time
- Expect the world average uncertainty to be reduced by ~10%
- Expect the upper limit on the SM
 Higgs mass to be reduced by ~ 5 GeV
- Expect ΔM_W =15 MeV for the ultimate Tevatron M_W uncertainty

Backup Slides

Higgs mass constraints (2009)

2009-06-03

STNY

VERSITY OF NEW YOR

Calorimeter calibration

- CDF calibration:
 - Use $J/\psi \rightarrow \mu\mu$, $\Upsilon \rightarrow \mu\mu$, $Z \rightarrow \mu\mu$ to calibration the tracking system
 - Use E/p distribution for electrons from W decays to calibrate the calorimeter system
- D0 calibration:
 - Worse tracker momentum resolution
 - Only ~20k Z \rightarrow ee events
 - Similar electron p_T distributions for Z and W events

η -equalization and absolute EM scale

• Once ϕ degree of freedom is eliminated, use Z \rightarrow ee events to absolutely calibrate each ϕ -intercalibrated η ring

• Reconstructed Z mass: $m = \sqrt{2E_1E_2(1-\cos\omega)}$ • The electron energies are evaluated as:

> $E_{1(2)} = E^{raw} + K(E^{raw}, \theta)$ Raw energy measurement from the calorimeter Parameterized energy-loss

◆Raw EM cluster energy:

Parameterized energy-loss corrections from Geant MC simulation

$$E^{raw} = \sum_{cells} C_{i\eta} \cdot E'$$

One (unknown) calibration constant per η ring Cell energy after electronics calibration, ϕ -nitercalibration and sampling weights

• Determine the set of calibration constants $C_{i\eta}$ that minimize the experimental resolution on the *Z* mass and give the correct (LEP) measured value