

Tevatron Electroweak Results and Top Quark Properties

Bodhitha Jayatilaka Duke University

On behalf of the CDF and DØ Collaborations

42nd Annual Fermilab Users' Meeting June 3, 2009

High p_T physics at the Tevatron

- Robust high-p_T physics program spanning a wide range of cross sections
 - High precision measurements to recent discoveries
- Measurements allow us to probe the standard model
 - Top quark gone from discovery to precision measurement in a decade
 - All SM diboson modes observed in Run II
- Sets us up to look for the Higgs
 - Top and W masses constrain the mass of the SM Higgs
 - Measurements shown here are important backgrounds for Higgs searches
 - See W. Fisher's talk for latest on Higgs searches

The experiments

- General purpose detectors
 - Nearly all aspects used in electroweak and top physics analyses
- "Mature" experiments
 - Stable running and no major upgrades
 - Allows us to focus on acquiring data and analyzing it

Speaking of data...

- Excellent accelerator performance
 - Inst. lum. exceeding 3×10³² cm⁻²s⁻¹
 - Over 6 fb⁻¹ delivered to each experiment
 - Results shown today use \leq 3.6 fb⁻¹
- Every bit of data helps
 - Even analyses with "abundant" statistics (e.g. W mass)
- Many thanks to the Fermilab accelerator division!

Precision physics: measuring the W mass

- At hadron colliders, rely on transverse mass, m_T
 - Requires precise measure of charged lepton p_T and hadronic recoil
- Use well-measured resonances to calibrate
 - Z boson, J/ψ, Υ
 - Requires detailed knowledge of detectors
- Perform fits to templates generated from calibrated simulation
- First Run II result from CDF using 200 pb⁻¹ m_W=80413±34(stat)±34(syst) MeV/c²

Published:

Phys. Rev. Lett. **99**, 151801 (2007) Phys. Rev. D. **77**, 112001 (2008)

W mass measurement: DØ

See J. Zhu's talk

Source	$\sigma(m_W)$ MeV m_T
Experimental	
Electron Energy Scale	34
Electron Energy Resolution Model	2
Electron Energy Nonlinearity	4
W and Z Electron energy	4
loss differences	
Recoil Model	6
Electron Efficiencies	5
Backgrounds	2
Experimental Total	35
W production and	
decay model	
PDF	9
QED	7
Boson p_T	2
W model Total	12
Total	37

- Electron channel with 1 fb⁻¹
- Combines all 3 fits
 m_W=80401±21(stat)±38(syst) MeV/c²
 - Single best measurement of *m*_W
 - Both CDF and DØ looking at larger datasets
 - ~25 MeV precision

Diboson physics

- Important test of standard model
 - Production rates would be altered by anomalous triple guage couplings
 - ZZZ, ZZY, ZYY not permitted in SM
- Critical for SM Higgs search
 - Similar final state to dominant decays of both light and heavy SM Higgs bosons
- Provided a series of natural benchmarks for Run II analyses in the electroweak sector
 - *WW*, *WZ*, and *ZZ* **all observed** with 5σ significance at Tevatron

- Offers a clean and relatively high statistics final state
 - 2 charged leptons and missing E_T
- CDF analysis uses matrix element-based likelihood
 - Based on $H \rightarrow WW$ analysis
- Most precise measurement **twice** in April: $D\emptyset(1.0 \text{ fb}^{-1}) \sigma_{WW}=11.5\pm2.1(\text{stat})\pm0.7(\text{syst}) \text{ pb}$ $CDF(3.6 \text{ fb}^{-1}) \sigma_{WW}=12.1\pm0.9(\text{stat})^{+1.6}_{-1.4}(\text{syst}) \text{ pb}$
- DØ analysis places new limits on anomalous TGCs

FNAL Users' Meeting, 6/3/09

ZZ production

- Smallest cross-section of SM diboson states
 - 4 charged leptons: unmistakable signature
 - 2 charged leptons+2 neutrinos: added statistics
- SM prediction: $\sigma_{ZZ} = 1.4 \pm 0.1 \text{ pb}$
- Last year
 - CDF: σ_{ZZ} =1.4^{+0.6}-0.7 pb (4.4σ)
- DØ
 - 4I (1.7 fb⁻¹, Run 2b): σ_{zz}=1.75^{+1.27}-0.86 pb (5.3σ)
 - 2I+2v (2.7 fb⁻¹): σ_{zz}=2.01±0.93(stat)±0.29(syst)pb (2.6σ)
- Combined (includes 1 fb⁻¹ Run 2a 4l analysis): $\sigma_{ZZ}=1.60\pm0.63$ (stat) ±0.17 (syst) pb
 - Significance of **5.7\sigma First observation**!

Phys. Rev. Lett. 101, 171803 (2008)

FNAL Users' Meeting, 6/3/09

WW/WZ/ZZ with a hadronic final state

- Search for VV (V=W,Z) where one boson decays hadronically
 - Much larger background
 - Topologically very similar to low mass SM Higgs (WH and ZH)
- Evidence presented by DØ using 1 fb⁻¹
 - Require one charged lepton: /vqq' final state
 - σ_{VV}=20.2±4.5 pb (4.4σ)
- CDF analysis using 3.5 fb⁻¹
 - No charged lepton requirement
 - Allows for vvqq' as well as lvqq' final states 0.2
- Observe 1516±239(stat)±144(syst) diboson events

 $\sigma_{VV}=18.0\pm2.8(stat)\pm2.4(syst)\pm1.1(lumi)$ pb

- Significance of **5.3σ** First observation!
- Theory: *σ*_{VV}=16.8±0.5pb

W&C seminar this Friday

Top pair production and decay at the Tevatron

- QCD pair production
 - Dominant source of top quarks for study $[\sigma=6.7\pm0.8pb @175 GeV]$
- Decay
 - Top quark decays before hadronization
 - $t \rightarrow Wb \sim 100\%$
 - Can identify b quarks from secondary decay
 - Top pair decays defined by decay of W
 - "dilepton": both Ws decay leptonically
 - "lepton+jets": one W to quarks and other to leptons
 - "all jets/hadronic": both Ws to quarks
- Cross section measurements
 - Inconsistency across channels could indicate new physics
 - Provides sample compositions for other measurements

e+jets 15%

'dileptons

FNAL Users' Meeting, 6/3/09

"lepton+jets"

FNAL Users' Meeting, 6/3/09

Top pair cross section: dilepton channel

- Two well-identified charged leptons (e or μ)
 - b-tagging not required to have relatively pure¹²⁰ sample
 - Requiring a tag results in almost pure signal sample
- CDF analysis in 2.8 fb⁻¹ in both samples $\sigma_{pre}=6.7\pm0.8(stat)\pm0.4(syst)\pm0.4(lumi)pb$ $\sigma_{tag}=7.8\pm0.9(stat)\pm0.7(syst)\pm0.4(lumi)pb$
- \bullet Exclusive sample: one τ and one e or μ
 - Search for hadronically decaying τ
 - NN tagging algorithm to identify b quarks
- DØ analysis with 2.1 fb⁻¹
- $\sigma_{l+\tau} = 7.32^{+1.34}_{-1.32} \text{ (stat)}^{+1.20}_{-1.06} \text{(syst)} \pm 0.45 \text{(lumi)} \text{pb}$
 - Combined with other dilepton results [1fb⁻¹]:
 - $\sigma_{II} = 7.1 \pm 1.0(stat)^{+0.7}_{-0.6}(syst)^{+0.6}_{-0.5}(lumi)pb$

Pretag Top Candidates With Njet ≥ 1

Tagged Top Candidates With Njet ≥ 2

events

2

Top pair cross section: lepton+jets

Reducing systematic uncertainty

- Uncertainty from luminosity begins to dominate
 - σ=7.1±0.4(stat)±0.4(syst)±0.4(lumi) pb
- Reduce by normalizing to Z cross section

$$\sigma_{t\bar{t}} = R \cdot \sigma_Z^{theory}$$

- Measure R in ttbar data sample and multiply by Z cross section from theory
- theory: σ_Z= 251.3 ± 5.0 pb [J. Phys. G: Nucl. Part. Phys. 34 (2007) 2457]
- Results:
 - Topological (NN): σ=6.9±0.4(stat)±0.4(syst)±0.1(theory)pb
 - b-tagged: σ =7.0±0.4(stat)±0.6(syst)±0.1(theory)pb
- Relative error on NN cross-section is 8.3%
 - Comparable with error from theory

Cross section summary

- Cross section measurements consistent across channels and experiments
- Tevatron combination underway

Single top

- Electroweak production of single top quark
 - s-channel: $\sigma_{\text{NLO}} = 1.98 \pm 0.21 \text{ pb}$
 - t-channel: $\sigma_{\text{NLO}} = 0.88 \pm 0.07 \text{ pb}$
- Allows for
 - Direct probe of *t*-*b* vertex
 - Several BSM phenomena (W', charged Higgs, etc.)
 - Similar final state as WH→Ivbb
- Not as "easy" as top pair measurement
 - Large backgrounds with large systematics
 - Makes counting experiment difficult
 - Rely on multivariate techniques

Extracting a signal

- Both CDF and DØ use a range of multivariate techniques to extract a single top signal
 - Likelihoods based on SM matrix elements
 - Decision trees
 - Neural networks
 - Combine all methods for maximal statistical power

FNAL Users' Meeting, 6/3/09

Events

Extracting a signal

- Both CDF and DØ use a range of multivariate techniques to extract a single top signal
 - Likelihoods based on SM matrix elements
 - Decision trees
 - Neural networks
 - Combine all methods for maximal statistical power

Single top: result

Single Top Cross Section	Signal Sig Expected	nificance Observed	CKM Matrix Element V _{tb}
CDF (3.2 fb⁻¹) <i>March 2009</i> [<i>m</i> _t =175 GeV/c ²] <i>arXiv:0903.0885</i>			
2.3 ^{+0.6} pb	>5.9σ	5.0σ	V _{tb} >0.71 @95%CL V _{tb} =0.91±0.13
DØ (2.3 fb⁻¹) March 2009 [m _t =170 GeV/c ²] arXiv:0903.0850			
3.94±0.88 pb	4.5σ	5.0σ	V _{tb} >0.78 @95%CL V _{tb} =1.07±0.12

5σ Observation from both CDF and DØ!

More precision physics: measuring the top mass

- Difficult measurement
 - Most information carried in quarks
 - Can only measure jets resulting from quarks
 - Jet-parton assignment
 - QCD radiation
 - Jet energy scale (JES) uncertainty dominates [~3%]
 - Can be reduced via *in situ* measurement from hadronic *W*
- Mass measurement techniques
 - Matrix element: form probabilities as function of *m_t* and JES from SM MEs, convolute with detector resolution functions and integrate
 - Template: form templates as function of *m_t* and JES from fully simulated events

Top mass: lepton+jets channel

- Reduce jet combinatorics and background by requiring ≥1 *b*-tag
- Matrix element technique for probabilities
- In situ JES calibration
 - Form 2D likelihood as function of top mass and shift in JES error
- CDF (3.2 fb⁻¹)

$m_t = 172.1 \pm 0.9(\text{stat}) \pm 1.3(\text{syst}) \text{ GeV}/c^2$

- Single best measurement, precision <1%
- DØ (3.6 fb⁻¹)

 $m_t = 173.7 \pm 0.8(\text{stat}) \pm 1.6(\text{syst}) \text{ GeV}/c^2$

Top mass: dilepton channel

- Requires integration over at least one variable
- DØ (3.6 fb⁻¹)
 - eµ channel and matrix element technique

 m_t =174.8±3.3(stat)±2.6(syst) GeV/ c^2

Combine with template measurement from 1 fb⁻¹

 m_t =174.7±2.9(stat)±2.4(syst) GeV/ c^2

- Single best measurement in channel, precision~2.2%
- CDF (2.0 fb⁻¹)
 - Evolutionary neural network to optimize selection for top mass
 - *m*_t=172.1±2.7(stat)±2.9(syst) GeV/*c*² Δm_t/m_t~9%
 - Phys. Rev. Lett. **102**, 152001 (2009)

Top mass: all hadronic

- Final state entirely measured (6 jets)
 - Very large QCD background
 - Require ≥1 *b*-tag or 2 *b*-tags
 - Further reduce background with neural net trained to identify non-top background
- Template method for mass measurement
 - Calibrate for JES in situ as in lepton+jets
- CDF (2.9 fb⁻¹)

 $m_t = 174.8 \pm 1.7 (\text{stat}) \pm 1.9 (\text{syst}) \text{ GeV}/c^2$

• Precision of $\sim 1.5\%$

Tevatron top mass combination

Combine using best measurement per channel, per experiment: **0.75% uncertainty**

New electroweak fit incorporating **new top mass combination** and **W mass measurement**: m_H<163 GeV/c² @95% CL

Both experiments working to better understand systematics

Forward-backward asymmetry

Reconstructed Top Rapidity

- New physics could result in large A_{FB} asymmetry
 - NLO QCD calculations predict $A_{FB} = 5 \pm 1.5\%$
- Measure in lepton+jets channel
 - \geq 4 jets, \geq 1 *b*-tag

- Use rapidity of hadronically decaying top
 - Correct for detector effects
- CDF (3.2 fb⁻¹)
 - A_{fb}=19.3±6.5(stat)±2.4(syst)%

- General form of *tbW* vertex:
 - $\mathcal{L} = -\frac{g}{\sqrt{2}} \bar{b} \gamma^{\mu} V_{tb} (f_1^L P_L + f_1^R P_R) t W_{\mu}^{-}$ $- \frac{g}{\sqrt{2}} \bar{b} \frac{i \sigma^{\mu\nu} q_{\nu} V_{tb}}{M_W} (f_2^L P_L + f_2^R P_R) t W_{\mu}^{-} + h.c.$
 - =1 and =0 in SM
- DØ: search for deviations from SM

0.9 fb⁻¹ of single top data

Anomalous couplings of the *tbW* vertex

• General form of *tbW* vertex:

$$\mathcal{L} = -\frac{g}{\sqrt{2}} \bar{b} \gamma^{\mu} V_{tb} (f_1^L P_L + f_1^R P_R) t W_{\mu}^{-} -\frac{g}{\sqrt{2}} \bar{b} \frac{i \sigma^{\mu\nu} q_{\nu} V_{tb}}{M_W} (f_2^L P_L + f_2^R P_R) t W_{\mu}^{-} + h.c.$$

- =1 and =0 in SM
- DØ: search for deviations from SM

Add 2.7fb⁻¹ of top pair data from helicity fraction measurement

Resonant production in top sample

- Search for narrow resonances decaying to top pairs
- DØ (3.6 fb⁻¹)
 - Lepton+jets channel mz'<820 GeV/c² excluded @95%CL
- CDF (2.8 fb⁻¹)
 - All hadronic channel [leptophobic Z'] m_{Z'}<800 GeV/c² excluded @95%CL

Conclusion

- Just a sampling of results
 - <u>http://www-cdf.fnal.gov/physics/physics.html</u> (CDF)
 - <u>http://www-d0.fnal.gov/Run2Physics/WWW/results.htm</u> (D0)
 - Numerous publications and PhD theses from both experiments
- Top and electroweak sectors reaching realm of precision physics
 - Two measurements of W mass more precise than any single LEP result
 - Top mass uncertainty to <1%
- Checking off remaining standard model business
 - All SM diboson states observed
 - Single top production observed
- Much more data on the way
 - >5 fb⁻¹ already on tape
- Stage is set to find the Higgs
 - Lets do it!

Backup

W Helicity

- In SM, t Wb with 100% BR
- Due to V-A, expect:
 - Left handed: f_=0.3
 - Longitudinal f₀=0.7
 - Right handed: suppressed
- cos θ^{*} angle between *d*-type fermion and *W* rest frame wrt *t* direction

CDF (1.9 fb⁻¹) f₀=0.62 \pm 0.10(stat) \pm 0.05(syst) f₊=-0.04 \pm 0.04(stat) \pm 0.03(syst)

Top mass summary

- Consistent results across channels and experiments
- Combine using most precise measurement per channel per experiment