

# **Recent Results from MiniBooNE and SciBooNE**



Sam Zeller LANL

**FNAL Users Meeting** 

June 3, 2009



• will be telling you what's new on the Booster v beamline at FNAL



- to remind you of your friends on other side of the ring ...
- two v experiments make use of 8 GeV Booster beam



#### **MiniBooNE**





<sup>-</sup> NIM A599, 28 (2009) -

Sam Zeller, FNAL Users Meeting, 06/03/09

- Cerenkov detector (CH<sub>2</sub>)
- main goal is to study v oscillations
- recently added a host of new  $\sigma_{v}$  meas



Los Alamos

#### **MiniBooNE**

- start: August 2002
  - 6 9 x10<sup>20</sup> POT v - 5.1 x10<sup>20</sup> POT v
- currently running  $\overline{v}$  mode
- recently approved for extended running (+5x10<sup>20</sup> POT)



- NIM A599, 28 (2009) -

Sam Zeller, FNAL Users Meeting, 06/03/09



Los Alamos

SciBooNE





• fine-grained tracking detector (CH) (DOE-wide Pollution Prevention P2 Star Award)

main goal is dedicated σ<sub>v</sub> (~ 1 GeV, T2K)
also serves as ND for MiniBooNE



Los Alamos



#### SciBooNE

- start: June 2007
  - 0.99 x10<sup>20</sup> POT v - 1.53 x10<sup>20</sup> POT v
- completed run Aug 2008
- detectors decommissioned







#### SciBooNE

- start: June 2007
  - 0.99 x10<sup>20</sup> POT  $\nu$
  - 1.53 x10<sup>20</sup> POT v
- completed run Aug 2008
- detectors decommissioned







- impressive timeline
- 3 years from formation to first result!



#### os Alamos Outline will go through some of recent results from two experiments (a lot has happened in the past year!) briefly summarize v oscillation results three v oscillation from MiniBooNE in past year updates from MB • brand new $\sigma_v$ measurements from both MiniBooNE & SciBooNE





- 1<sup>st</sup>, re-analysis of v mode
  - review of bkg estimates

 $\nu_{\mu} \rightarrow \nu_{e}$  analysis

- extension down to 200 MeV
- increased stats
   FNAL W&C August 2008





1<sup>st</sup>, re-analysis of v mode

- review of bkg estimates

 $v_{\mu} \rightarrow v_{e}$  analysis

- extension down to 200 MeV
- increased stats
   FNAL W&C August 2008

> 475 MeV: unchanged no LSND-like oscillations (2v)





•  $1^{st}$ , re-analysis of v mode

- review of bkg estimates

 $v_{\mu} \rightarrow v_{e}$  analysis

- extension down to 200 MeV
- increased stats
   FNAL W&C August 2008

> 475 MeV: unchanged no LSND-like oscillations (2v)

< 475 MeV: low energy excess persists (3o 200-475 MeV)





(G. Karagiorgi)



- arXiv:0904:1958 [hep-ex] -

 1<sup>st</sup> look at v mode data unblinded in Nov 2008
 FNAL W&C December 2008

- statistics are low
  no statement on LSND yet
- no low energy excess?!
- working on combined v/v
  + will benefit from more stats





(G. Karagiorgi)



• 1<sup>st</sup> look at  $\overline{v}$  mode data unblinded in Nov 2008 FNAL W&C December 2008

- statistics are low - no statema
  - we'll have to see

+

how this picture evolves ...rom more stats



#### (K. Mahn)



also performed search for  $\nu_{\mu}$  and  $\overline{\nu_{\mu}}$  disappearance

- set limits FNAL W&C October 2008
- carving out new regions of parameter space
- update incorporating SciBooNE data is currently underway (which should help further improve limits)





 of critical importance to future v oscillation exps which will be operating in this few-GeV E range













- of critical importance to future v oscillation exps which will be operating in this few-GeV E range
- data are 20-30 years old
  - 100's of events, mostly D<sub>2</sub>
     calcs we use are also old
- situation have been suffering with for past 30+ years
- rapidly improving

   (in large part due to efforts at FNAL)





- of critical importance to future v oscillation exps which will be operating in this few-GeV E range
- data are 20-30 years old
  - 100's of events, mostly D<sub>2</sub>
    calcs we use are also old
- situation have been suffering with for past 30+ years
- rapidly improving

   (in large part due to efforts at FNAL)





- of critical importance to future v oscillation exps which will be operating in this few-GeV E range
- data are 20-30 years old
  - 100's of events, mostly D<sub>2</sub>
    calcs we use are also old
- situation have been suffering with for past 30+ years
- rapidly improving

   (in large part due to efforts at FNAL)





- of critical importance to future v oscillation exps which will be operating in this few-GeV E range
- data are 20-30 years old
  - 100's of events, mostly D<sub>2</sub>
    calcs we use are also old
- situation have been suffering with for past 30+ years
- rapidly improving (in large part due to efforts at FNAL)





#### Booster v Flux Predictions



- caliber of data helped greatly reduce v flux uncertainties
- comprehensive v flux paper
   PRD 79, 072002 (2009) -

- make heavy use of pBe  $\rightarrow \pi^{+/-}$ data from **HARP** experiment
  - Eur. Phys. J. C52, 29 (2007) -
  - 8.9 GeV/c protons
  - exact replica target (5%  $\lambda$ )





#### Booster v Flux Predictions



- caliber of data helped greatly reduce v flux uncertainties
- comprehensive v flux paper
   PRD 79, 072002 (2009) -

- make heavy use of pBe  $\rightarrow \pi^{+/-}$ data from **HARP** experiment
  - Eur. Phys. J. C52, 29 (2007) -
  - 8.9 GeV/c protons
  - exact replica target (5%  $\lambda$ )





### **Elastic Scattering Processes**



• let's start on the left and work our way up in energy ...



CC QE scattering



NC elastic scattering



• "golden channel" (signal sample)

- cross section = # of signal events
- **kinematics** = looking for effects as function  $E_v$

 v experiments typically simulate with relativistic Fermi Gas model (RFG) Smith and Moniz, NP B43, 605 (1972)





NC elastic scattering



#### MiniBooNE:



- reconstruct muon  $(T_{\mu}, \theta_{\mu})$
- advantage of SB: can reconstruct both  $\mu$  and p





NC elastic scattering





- 146,070  $\nu_{\mu}$  QE events (76% purity, 27%  $\epsilon)$
- provide most complete information on  $v_{\mu}$  QE scattering to date (full  $\mu$  kinematics)













NC elastic scattering



#### SciBooNE: can clearly resolve final state 150 100 50 0 -50 -100 -150 -50 50 100 150 200 250 300 Ω reconstruct <u>both</u> μ and proton (2 track analysis)

• 2,680  $\nu_{\mu}$  QE events (69% purity, 2.3%  $\epsilon)$ 







- MiniBooNE and SciBooNE in good agreement
   1<sup>st</sup> meas on nuclear target at low energy (E<sub>ν</sub> < 2 GeV)</li>
- both higher than recent  $\sigma_{\rm QE}$  from NOMAD?! all three on <sup>12</sup>C



- importance of NuMI data (MINOS ND, MINERvA)!
- FNAL exps will make the defining statement on this  $\sigma$  (in doing so, will populate plot better than has ever been done in history)



- importance of NuMI data (MINOS ND, MINERvA)!
- FNAL exps will make the defining statement on this  $\sigma$  (in doing so, will populate plot better than has ever been done in history)



#### **NC Elastic Scattering**

#### CC QE scattering







- can study NC counterpart of this reaction  $(M_A, \sigma, eventually \Delta s)$
- MiniBooNE: 94,500  $v_{\mu}$  NC EL events (65% purity, 26%  $\epsilon$ )
- using this high quality data ...



#### **NC Elastic Scattering**







#### **NC Elastic Scattering**





#### Single $\pi$ Production





### NC $\pi^0$ Production







- **background** to  $v_{\mu} \rightarrow v_{e}$  searches,  $\theta_{13}$ final state can mimic a  $v_{e}$  interaction,  $\pi^{0} \rightarrow \gamma \chi$
- very little historical data on this channel





#### NC $\pi^0$ Production



#### MiniBooNE:



world's largest sample of NC  $\pi^0$  events (important constraint for  $v_e$ )

21,542  $\nu_{\mu}$  NC  $\pi^{0}$  events (73% purity, 36%  $\epsilon$ ) 2,305  $\overline{\nu_{\mu}}$  NC  $\pi^{0}$  events (58% purity, 36%  $\epsilon$ )









### NC $\pi^0$ Production













• NC  $\pi^0$  production





• **background** to  $v_{\mu}$  disappearance

-  $\pi^+$  absorption = missing E = mis-estimate E<sub>v</sub> can spoil v<sub>µ</sub> disappearance signal

• future experiments must know CC  $\pi^+$ fraction to a few-% to measure  $\Delta m^2_{23}$ , $\theta_{23}$ (example: 5-10% is quoted goal for T2K)

• want to know cross section as fcn  $E_v$ 









• NC  $\pi^0$  production





#### MiniBooNE:

#### (M. Wilking)

- developed new  $\mu$  +  $\pi^+$  fitter (a first for C)
- correctly identify  $\mu,\,\pi^{+}$  88% of time
- 48,000 CC  $\pi^+$  events (90% purity)







measured 8 different cross sections:



(M. Wilking)

×10

cm\*/MeV)

a(KE\_)∂(cos(θ\_)

0.04

0.02

350

400

#### CC $\pi^+$ Production







**SciBooNE:** has probed this interaction even further



- two ways can be produced
- SB can isolate coherent mode of production
- search for events with small vertex activity
- can't be done on MiniBooNE

#### Los Alamos CC $\pi^+$ Production SciBooNE: (K. Hiraide) • NC $\pi^0$ production Entries / 0.025 (GeV/c)<sup>2</sup> 0 05 coherent $\pi$ DATA prediction CC coherent n 70 $\pi^0$ CC resonant n Other n,p n,p CC QE 50 **SciBooNE** • CC $\pi^+$ production 0.1 0.2 0.3 0.4 0.5 Q<sup>2</sup> (GeV/c)<sup>2</sup> PRD 78, 112004 (2008) $W^+$ first physics publication from SciBooNE n,p FNAL W&C November 2008 updated analysis currently underway (expanded kinematic search, both v and $\overline{v}$ )







#### **Recent Publications**

#### since 2008, MB has published/submitted <u>10 papers</u>

- "Measurement of CC  $\pi^+$ /QE  $\sigma$  Ratio on CH<sub>2</sub> in a 0.8 GeV v Beam", arXiv:0904.3159, submitted to PRL
- "A Search for  $v_e$  Appearance at the  $\Delta m^2 \sim 1 eV^2$  Scale", arXiv:0904.1958, submitted to PRL
- "A Search for  $v_{\mu}$  and  $v_{\mu}$  Disappearance in MiniBooNE", arXiv:0-903.2465, submitted to PRL
- "Unexplained Excess of Electron-Like Events from a 1 GeV v Beam", PRL 102, 101802 (2009)
- "1<sup>st</sup> Measurement of  $v_{\mu}$ ,  $v_{e}$  Events in Off-Axis Horn-Focused v Beam", PRL **102**, 211801 (2009)
- "The MiniBooNE Detector", NIM A599, 28 (2009)
- "The v Flux Prediction at MiniBooNE", PRD 79, 072002 (2009)
- "Compatibility of High  $\Delta m^2 v_e$  and  $v_e$  Oscillation Searches", PRD 78, 012007 (2008)
- "1<sup>st</sup> Observation of Coherent π<sup>0</sup> Production in v-Nucleus Interactions with E<sub>v</sub><2 GeV", PL B664, 41 (2008)
- "Measurement of  $v_{\mu}$  Quasi-Elastic Scattering on Carbon", PRL **100**, 032301 (2008)

graduated 6 PhD students (more to come!)

#### SB published 1<sup>st</sup> physics paper <u>4 months</u> after 1 year run

- "Search for CC Coherent π<sup>+</sup> Production on Carbon in a Few-GeV v Beam", PRD 78, 112004 (2008)
- plus many conference proceedings
- graduated 3 PhD students (more to come!)



## Conclusions

- both collaborations have been extremely active in past year
- MiniBooNE released 3 new neutrino oscillation results (& associated publications)
- both MiniBooNE and SciBooNE have a flood of new low energy σ<sub>ν</sub> measurements (E<sub>ν</sub><2 GeV)</li>
  - important for v oscillation exps
  - Fermilab poised to dramatically change current landscape & our understanding of v interactions:



- MiniBooNE, SciBooNE ... Booster v's MINOS, MINERvA ... MI v's
- can look forward to even more to come!