

Searches for an high mass Higgs boson in the H → WW channel at the CDF experiment

Simone Pagan Griso NFN and University of Padova

Fermilab Users' Meeting 2009 eatured Graduate Student Talk June 3-4, 2009

The Higgs mechanism

- Explaining the EW symmetry breaking is a major goal for particle physics nowadays, and Tevatron can probe it!
- Finding the Higgs boson → a good proof that this mechanism is the one that nature chose

• Four main production mechanisms at Tevatron:

- As sensitivity increases all of them become important!
- Lots of measurements down to ~pb processes

$$\sigma_{SM}^{m_{H}=160\,GeV} \sim 0.6\,pb$$

• For $m_{H} > 135 \text{ GeV/c}^2$ H \rightarrow WW dominant

- This is how we define high mass Higgs searches at Tevatron
- Still contributes significantly to Higgs searches down to 120 GeV/c²

Final state: $H \rightarrow WW \rightarrow IvIv$

- W decays
 - BR(W→I v) ~ 32%
 - BR(W→hadrons) ~ 68%
- Hadronic modes have large QCD background: not used.

- We select both W decaying leptonically
 - Easy and clean triggers on single electron or muon
 - Manageable trigger cross section at hadronic colliders
 - Clean signature, exploiting good tracking and muon systems of CDF
 - Partially includes $\tau \rightarrow (e,\mu)$
 - Overall BR for WW pair to di-lepton (e or μ) ~ 6%

Main background contributions

- Background modeling
 - Data-driven modeling whenever possible: W+jets
 - Most processes modeled with Pythia⊗Geant3 Monte Carlo
 - Exception is WW: MC@NLO
 - Cross sections normalized to (N)NLO calculation

Event selection

- In order to enhance signal/background ratio, require:
 - Two opposite sign, isolated electrons or muons
 - $p_T > 20$ GeV/c for trigger lepton, $p_T > 10$ GeV/c for the 2rd lepton
 - Significant Missing E_T
 - reject Drell-Yan events
 - m(II) > 16 GeV/c²
 - reject heavy flavor decays

CDF RunII Preliminary $\int \mathcal{L} = 3.6 \text{ fb}^{-1}, M_H = 160 \text{ GeV}$

\mathcal{L} (fb ⁻¹)	Signal	Background	S/\sqrt{B}	Data
3.6	19.3 ± 2.4	1088 ± 105	0.59	1085

• A simple counting experiment is not enough..

Improving S/JB

- Study the kinematics:
 - Spin 1 particles (WW pair) from spin-0 Higgs boson

- Use multivariate techniques (Neural Networks) to separate signal and background
 - one NN for each Higgs mass hypothesis to probe
 - Divide the analysis in different channels by jet (E_τ > 15 GeV, |η| < 2.5) multiplicity: 0,1,2+ Jets
 - optimize Neural Network inputs for each channel

 $L = 3.6 \text{ fb}^{-1}$

W+jets

Wγ

tt WZ

ZZ

- Data

200

DY WW $-HWW \times 10$

CDF Run II Preliminary

 $M_{\rm H} = 160 \ {\rm GeV/c^2}$

OS 1 Jets

70

60

50

40

30

20

Events / 8 GeV/c

- Three different kind of inputs:
 - Lepton-specific ($p_{\tau}(I), ...$)
 - Angular ($\Delta \phi(I,I), \Delta \phi(I, E_{\tau}), \ldots$)
 - Kinematics (E_{τ} , H_{τ} , ...)

5

Signal from gluon fusion

- Main background: WW
- Use also Matrix Element probabilities as input to the NN
 - LO theoretical cross section calculations convoluted with experimental resolution for detecting each object

CDF Run II Preliminary	$\int \mathcal{L}$ =	= 3.6	${ m fb}^{-1}$
$M_H = 160 \mathrm{Ge}$	eV/c^2		
$\overline{t\overline{t}}$	1.35	\pm	0.21
DY	80	\pm	18
WW	318	\pm	35
WZ	14	\pm	1.9
ZZ	20.7	\pm	2.8
$W{+}\mathrm{jets}$	113	\pm	27
$W\gamma$	92	\pm	25
Total Background	637	\pm	67
$gg \to H$	9.5	\pm	1.4
Total Signal	9.5	\pm	1.4
Data		654	

OS 0 Jets

• Final states with 1 jet

- 22% of the signal from (W/Z)H and Vector Boson Fusion (VBF)
- WW still a dominant background

CDF Run II Preliminary	$\int \mathcal{L}$	=3	$.6 {\rm fb}^{-1}$
$M_H = 160 \mathrm{Ge}$	eV/c^2		
$t\bar{t}$	34.9	\pm	5.5
DY	85	\pm	27
WW	85.3	\pm	9.1
WZ	14.5	\pm	2.0
ZZ	5.48	\pm	0.75
$W + ext{jets}$	40	\pm	10
$W\gamma$	13.2	\pm	4.0
Total Background	278	\pm	35
gg ightarrow H	4.70	\pm	0.72
WH	0.661	\pm	0.086
ZH	0.244	\pm	0.032
VBF	0.381	\pm	0.061
Total Signal	5.98	±	0.78
Data		262	

S. Pagan Griso, Fermilab Users' meeting 2009

WW + 2 or more jets

• Final states with 2 or more jets:

- (W/Z)H and VBF are 62% of the total signal
- Veto identified b-jets to reduce tt

CDF Run II Preliminary	ſĹ	=3	$.6 \text{ fb}^{-1}$						
$M_H = 160 \ { m GeV}/c^2$									
$t\bar{t}$	100	\pm	17						
DY	33	\pm	11						
WW	17.6	\pm	4.0						
WZ	3.76	\pm	0.52						
ZZ	1.62	\pm	0.22						
$W{+}\mathrm{jets}$	14.7	\pm	4.0						
$W\gamma$	2.12	\pm	0.70						
Total Background	173	\pm	23						
$gg \to H$	1.75	\pm	0.30						
WH	1.39	\pm	0.18						
ZH	0.693	\pm	0.090						
VBF	0.70	\pm	0.11						
Total Signal	4.53	\pm	0.52						
Data		169							
		С	S 2+ Jets						

Same Sign: additional Higgs acceptance

To further increase Higgs acceptance, events with two same-sign leptons are separately analyzed

- WH→WWW→I[±] I[±] + X is the main signal contribution
- Dominant Backgrounds:
 - Lepton charge misidentification
 - jets faking leptons
- Analysis technique similar to Opposite Sign analysis
 - Require at least 1 jet
 - Remove Missing E_{T} cut

CDF Run II Preliminary	r ∫ L	$\zeta = 3$	$.6 {\rm fb}^{-1}$
$M_H = 160$			
$t\overline{t}$	0.11	\pm	0.03
DY	11.99	\pm	3.65
WW	0.020	\pm	0.005
WZ	6.82	\pm	0.93
ZZ	1.44	\pm	0.20
W+jets	22.45	\pm	6.73
$W\gamma$	3.23	\pm	1.00
Total Background	46.07	\pm	8.02
WH	1.19	\pm	0.16
ZH	0.19	\pm	0.02
Total Signal	1.38	\pm	0.18
Data		41	

- Two main classes of systematics uncertainties
 - Rate systematics: Dominant. Affects normalization of NN output distribution. Major contributors are theoretical cross section errors.
 - Shape systematics: Found to be negligible up to now. Modify shape of NN output distribution. One example is Jet Energy Scale.

WW cross section measurement

 Same data sample and same techniques used for Higgs search

 $\sigma(p \,\overline{p} \rightarrow WW) = 12.1^{+1.8}_{-1.7} \, pb$

CDF Public Note 9753, PRL in progress

- Use NN output distributions to calculate 95% CL upper limits in the 110 < m_H < 200 GeV/c² mass range
 - using a pure Bayesian method
 - perform a counting experiment for each bin of the NN outputs
 - include systematics, accounts correlations among channels

m _H = 165 GeV	σ / $\sigma_{_{SM}}$	
Channel	Expected Limits	Observed Limit
OS 0 Jets	2.4	2.4
OS 1 Jet	2.8	2.1
OS 2+ Jets	3.6	5.5
SS 1+Jets	7.6	5.4

CDF approaching SM sensitivity!

CDF Public Note 9764 – PRL in progress

• Goal: reach single-experiment exclusion – short term

Additional improvements

- in combination with D0 need to improve 70%
- $H \rightarrow ZZ$ could also be a viable resource

Goal: SM sensitivity combining with D0 – longer term

- H → WW has been proven to be an excellent way to search for an high mass Higgs boson at CDF
 - Current limits are $1.3 \cdot \sigma_{_{SM}} @ m_{_H} = 165 \text{ GeV/c}^2$
- Analysis is improving faster and faster
 - rapid incorporation of new data
 - sensitivity increasing faster than luminosity scaling
- Aim to reach single experiment SM sensitivity for a wide mass range

Backup

- Tevatron
- CDF
- X-sec table and references
- Details for CDF H→WW analyses
 - Systematic tables
 - Matrix Element calculation
 - CDF limits table
- Improvements in plots
- Combination
 - Bayesian approach details
 - CDF combination results

Tevatron Performance

FERMILAB'S ACCELERATOR CHAIN

Higgs Production at the Tevatron

SM Higgs production

June 3, 2009

S. Pagan Griso, Fermilab Users' meeting 2009

Higgs production x-sections

- New ggH signal x-sections by Florian at Grazzini (arXiv:0901.2427), Anastasiou et al. (arXiv:0811.3458)
 - included NNLL σ(gg→H), latest MSTW2008 pdf, 2-loop ewk corrections, exact b-quark treatment @ NLO

$M_H \; ({\rm GeV}/c^2)$	$\sigma_{gg \to H} \text{ (pb)}$	$\sigma_{WH} (pb)$	σ_{ZH} (pb)	$\sigma_{ m VBF}~(m pb)$	$Br_{H \rightarrow WW}$
110	1.413	0.208	0.124	0.084	0.044
120	1.093	0.153	0.093	0.072	0.132
130	0.858	0.114	0.071	0.061	0.287
140	0.682	0.086	0.054	0.052	0.483
145	0.611	0.075	0.048	0.048	0.573
150	0.548	0.065	0.042	0.045	0.682
155	0.492	0.057	0.037	0.041	0.801
160	0.439	0.051	0.033	0.038	0.901
165	0.389	0.044	0.029	0.035	0.957
170	0.349	0.039	0.026	0.033	0.965
175	0.314	0.034	0.023	0.031	0.951
180	0.283	0.031	0.021	0.028	0.935
190	0.231	0.024	0.017	0.024	0.776
200	0.192	0.019	0.014	0.021	0.735

CDF Analysis: Systematcs (1J)

Uncertainty Source	WW	WZ	ZZ	$t \overline{t}$	DY	$W\gamma$	W+jet	II. containte Course		WIT	711	VDE
Cross Section								Uncertainty Source	$gg \rightarrow H$	WП	ΔΠ	VBF
Scale								Cross Section				
PDF Model								Scale	10.9%			
Total	6.0%	6.0%	6.0%	10.0%	5.0%	10.0%		PDF Model	5.1%			
Acceptance								Total	12.0%	5.0%	5.0%	10.0%
Scale								Accentance		,.	,.	
PDF Model	1.9%	2.7%	2.7%	2.1%	4.1%	2.2%		Acceptance				
Higher-order Diagrams	5.0%	10.0%	10.0%	10.0%	1	10.0%		Scale (leptons)	2.8%			
Jet Modeling	-1.0%				30.0%	15.0%		Scale (jets)	-5.1%			
Conversion Modeling						20.0%		PDF Model (leptons)	1.7%	1.2%	0.9%	2.2%
Jet Fake Rates								PDF Model (jets)	-1.9%			
(Low S/B)							22.2%	FWK Higher order Disgrams		10.002	10.002	10 002
(High S/B)							31.5%	EWK Higher-order Diagrams		10.0%	10.0%	10.0%
MC Run Dependence	1.9%			1.0%		2.4%		Lepton ID Efficiencies	1.9%	1.9%	1.9%	1.9%
Lepton ID Efficiencies	2.0%	2.0%	2.2%	1.8%	2.0%	2.0%		Trigger Efficiencies	3.3%	2.1%	2.1%	3.3%
Trigger Efficiencies	2.1%	2.1%	2.1%	2.0%	3.4%	7.0%		Luminosity	5.9%	5.9%	5.9%	5.9%
Luminosity	5.9%	5.9%	5.9%	5.9%	5.9%	5.9%		· · ·				

Matrix Elements at CDF (OJ only)

$$P(\vec{x}_{obs}) = \frac{1}{\langle \sigma \rangle} \int \frac{d\sigma_{th}(\vec{y})}{d\vec{y}} \, \epsilon(\vec{y}) \, G(\vec{x}_{obs}, \vec{y}) \, d\vec{y}$$

- \vec{x}_{obs} Observed leptons and $\not\!\!E_T$
- \vec{y} True lepton 4-vectors (l, v)
- σ_{th} Leading order theoretical cross-section
- $\epsilon(\vec{y})$ Efficiency & acceptance
- $G(\vec{x}_{obs}, \vec{y})$ Resolution effects
- $1/\langle \sigma \rangle$ Normalization

June 3, 2009

S. Pagan Griso, Fermilab Users' meeting 2009

CDF Limits

New x-sec: OS+SS

OS+SS	110	120	130	140	145	150	155	160	165	170	175	180	190	200
$-2\sigma/\sigma_{SM}$	15.48	5.31	2.60	1.69	1.47	1.23	1.04	0.79	0.77	0.88	1.08	1.21	1.92	2.52
$-1\sigma/\sigma_{SM}$	21.85	7.39	3.61	2.38	2.04	1.72	1.42	1.07	1.05	1.21	1.47	1.66	2.68	3.54
$Median/\sigma_{SM}$	31.48	10.62	5.26	3.40	2.94	2.46	2.02	1.52	1.50	1.73	2.10	2.40	3.84	5.11
$+1\sigma/\sigma_{SM}$	45.61	15.32	7.61	4.92	4.26	3.51	2.95	2.19	2.18	2.49	3.05	3.47	5.59	7.43
$+2\sigma/\sigma_{SM}$	63.79	21.54	10.71	6.82	6.01	5.02	4.14	3.12	3.00	3.49	4.24	4.88	7.78	10.66
Observed/ σ_{SM}	51.05	12.22	6.06	3.52	3.14	2.39	1.99	1.37	1.33	1.81	2.02	2.23	3.56	6.24

• ICHEP x-sec: OS+SS

OS+SS	110	120	130	140	145	150	155	160	165	170	175	180	190	200
$-2\sigma/\sigma_{SM}$	16.26	5.45	2.62	1.71	1.44	1.23	1.00	0.75	0.74	0.85	1.00	1.17	1.82	2.39
$-1\sigma/\sigma_{SM}$	22.78	7.43	3.69	2.35	2.01	1.71	1.38	1.03	1.02	1.16	1.39	1.60	2.53	3.36
$\mathbf{Median}/\sigma_{\mathbf{SM}}$	32.40	10.79	5.31	3.36	2.92	2.44	1.97	1.47	1.45	1.66	2.00	2.31	3.65	4.89
$+1\sigma/\sigma_{SM}$	47.08	15.64	7.66	4.86	4.20	3.52	2.87	2.14	2.08	2.38	2.88	3.36	5.33	7.11
$+2\sigma/\sigma_{SM}$	66.21	21.71	10.63	6.91	5.89	4.96	4.03	2.96	2.95	3.36	4.09	4.76	7.49	10.08
$Observed/\sigma_{SM}$	52.20	12.58	5.88	3.56	3.11	2.31	1.91	1.37	1.29	1.67	2.01	2.03	3.59	5.94

- New pdf MSTW 2008
- Better treatment of b-quark
- 2-loop ewk corrections and NNLL x-sec already incuded

Improvements in Plots

- Lower Missing E_T
- Lower m(II)
- Lepton isolation
- Tri-lepton events
- Improve lepton acceptance/purity (and add new triggers)

S. Pagan Griso, Fermilab Users' meeting 2009

Higgs Tevatron combination

• CDF and D0 combination: Bayesian method

$$\mathcal{L}(R) \times \pi(\vec{\theta}) = \prod_{i=1}^{N_{C} \cdot Nbins} \mu_{i}^{n_{i}} e^{-\mu_{i}} / n_{i}! \times \prod_{k=1}^{n_{NP}} e^{-\theta_{k}^{2}/2}$$

$$\mu_{i} = R \times s_{i}(\vec{\theta}) + b_{i}(\vec{\theta}) = \text{expected events}$$

$$R = \text{Signal in } \sigma_{SM} \text{ units}$$

$$n_{i} = \text{``observed''' events}$$

$$\vec{\theta} = \text{Nuisance parameters}$$

$$m_{H} = 160$$

Extract 95% CL limits on R integrating out nuisance parameters

 It's not just a √2 factor: correlate systematics among experiments ര*BR/SM

CDF: overall picture

CDF Combination on Higgs searches

http://www-cdf.fnal.gov/physics/new/hdg/results/combcdf_mar09/

S. Pagan Griso, Fermilab Users' meeting 2009

• Combining with D0 colleagues we achieved the first SM Higgs boson exclusion above LEP limits (see Wade's talk)

Considering also indirect constraints from EWK precision measurements

June 3, 2009

S. Pagan Griso, Fermilab Users' meeting 2009