SINGLE-INCLUSIVE JET PRODUCTION IN ELECTRON-NUCLEON COLLISIONS AT NNLO

Gabriel Abelof

Argonne NATIONAL LABORATORY

NORTHWESTERN UNIVERSITY

> In collaboration with R. Boughezal, X. Liu, F. Petriello Based on Physics Letters B (2016), pp. 52-59, [arXiv:1607.04921]

October 28, 2016 - Argonne National Laboratory

INTRODUCTION

- A large part of our knowledge about the internal structure of hadrons, and about QCD in general, comes from lepton-hadron scattering experiments.
- Traditionally we have studied the processes $lN \rightarrow lX$, $lN \rightarrow ljX$ and $lN \rightarrow lhX$
- ✤ Recently there has been a growing interest in $lN \rightarrow jX$ and $lN \rightarrow hX$ from both the theory and experimental communities. Applications include:
 - Measurement of the strong coupling constant
 - Extraction of fragmentation functions
 - * Better our understanding of single-spin asymmetries in $pp^{\uparrow} \rightarrow hX$. Large all the way from fixed-target to collider energies
 - Improve our understanding of factorization:
 - * Study of multiple parton interactions (MPI) and higher twist operators
 - Transverse-momentum-dependent (TMD) parton distributions

This talk: $lN \rightarrow jX$ through NNLO ($\mathcal{O}(\alpha^2 \alpha_s^2)$) in pQCD

G. Abelof

WHY NNLO?

(Semi)Inclusive DIS vs single-inclusive jet production

DIS $e^- N \to e^- X$

Inclusive jet production $e^- N \rightarrow j X$

★ Lepton observed
★ Cut on Q² = -q²
★ Hard scale Q

- * Inclusive over lepton * Cut on p_T^{jet} * Hard scale p_T^{jet}
- * Equivalent at LO. Lepton recoils against jet (A)

 $p_T^{jet} = Q \, \cos\left(\frac{\theta}{2}\right)$

- * At NLO, inclusive jet production probes the $Q^2 \sim 0$ region, unavailable in DIS
 - New singularities, new photon-initiated partonic channels
 - Large corrections from this region

G. Abelof

WHY NNLO?

NLO QCD correction is small for inclusive DIS (~5%), but it is huge for single-inclusive jet production (>100%).

[Hinderer, Schlegel, Vogelsang '15]

NNLO needed for:

Assessing stability of perturbative seriesPrecise theoretical predictions

G. Abelof

THE SETUP (LO)

At leading order, the process $lN \rightarrow jX$ is trivial

$$d\sigma_{\rm LO} = \int \frac{d\xi_1}{\xi_1} \frac{d\xi_2}{\xi_2} \sum_{q} \left[f_{q/H}^1 f_{l/l}^2 d\hat{\sigma}_{ql}^{(2,0)} + f_{\bar{q}/H}^1 f_{l/l}^2 d\hat{\sigma}_{\bar{q}l}^{(2,0)} \right]$$
$$f_{i/j}^k = f_{i/j}(\xi_k) \qquad \qquad f_{l/l}(\xi) = \delta(1-\xi) \qquad \qquad d\hat{\sigma}_{ql}^{(m,n)} \propto \alpha^n \alpha_s^m$$

The partonic cross sections are

$$\mathrm{d}\hat{\sigma}_{ql}^{(2,0)} = \frac{(4\pi\alpha)^2}{8s} e_q^2 \,\mathrm{d}\Phi_B(p_3, p_4; p_1, p_2) |\mathcal{M}_B|^2 J^{(1)}(p_3)$$

G. Abelof

THE SETUP (NLO)

At NLO

- * Real and virtual corrections to ql channel.
- * gl channel opens up

$$d\hat{\sigma}_{ql}^{(2,1)} = \int d\Phi_R |\mathcal{M}_R^{(ql)}|^2 J^{(2)}(p_3, p_5) + \int d\Phi_B |\mathcal{M}_V^{(ql)}|^2 J^{(1)}(p_3)$$
$$d\hat{\sigma}_{gl}^{(2,1)} = \int d\Phi_R |\mathcal{M}_R^{(gl)}|^2 J^{(2)}(p_3, p_5)$$

- We handle the QCD soft and collinear IR singularities with standard NLO techniques, and mass factorization as usual
- We also handle the QED singularity $(p_l || p_{l'})$ with standard NLO techniques and mass factorization
 - \implies Introduce (LO) photon-initiated processes

G. Abelof

THE SETUP (NLO)

•NLO correction to $lN \to jX$:

$$d\sigma_{\rm NLO} = \int \frac{d\xi_1}{\xi_1} \frac{d\xi_2}{\xi_2} \left\{ f_{g/H}^1 f_{l/l}^2 d\hat{\sigma}_{gl}^{(2,1)} + f_{g/H}^1 f_{\gamma/l}^2 d\hat{\sigma}_{g\gamma}^{(1,1)} \right. \\ \left. + \sum_q \left[f_{q/H}^1 f_{l/l}^2 d\hat{\sigma}_{ql}^{(2,1)} + f_{\bar{q}/H}^1 f_{l/l}^2 d\hat{\sigma}_{\bar{q}l}^{(2,1)} \right. \\ \left. + f_{q/H}^1 f_{\gamma/l}^2 d\hat{\sigma}_{q\gamma}^{(1,1)} + f_{\bar{q}/H}^1 f_{\gamma/l}^2 d\hat{\sigma}_{\bar{q}\gamma}^{(2,1)} \right] \right\}$$

Perturbative photon-in-lepton distribution (Weizsäcker-Williams)

$$f_{\gamma/l}(\xi) = \frac{\alpha}{2\pi} P_{\gamma l}(\xi) \left[\ln\left(\frac{\mu^2}{\xi^2 m_l^2}\right) - 1 \right] + \mathcal{O}(\alpha^2)$$
$$P_{\gamma l}(\xi) = \frac{1 + (1 - \xi)^2}{\xi}$$

G. Abelof

THE SETUP (NNLO)

♣At NNLO

- * Genuine NNLO corrections to ql and gl channels
 - QCD IR divergencies handled with N-Jettiness subtraction [Boughezal, Focke, Liu, Petriello '15; Gaunt, Stahlhofen, Tackmann, Walsh '15]
 - * QED IR divergencies $(p_l || p_{l'}, p_l || p_{l'} || p_q)$ handled with antenna subtraction [Daleo, Gehrmann, Gehrmann-De Ridder, Luisoni '10; Boughezal, Gehrmann-De Ridder, Ritzmann '10; Gehrmann, Gehrmann-De Ridder, Ritzmann '12]
- * NLO corrections to $q\gamma$ and $g\gamma$ channels. All singularities treated with antennae.
- *New $q\bar{q}$ and qg channels

THE SETUP (NNLO)

Quark-in-lepton distribution computed perturbatively from DGLAP equation

$$\mu^2 \frac{\partial f_{q/l}}{\partial \mu^2}(\xi, \mu^2) = e_q^2 \frac{\alpha}{2\pi} \int_{\xi}^1 \frac{\mathrm{d}z}{z} \left[P_{q\gamma}^{(0)}(z) f_{\gamma/l}\left(\frac{\xi}{z}, \mu^2\right) + \frac{\alpha}{2\pi} P_{ql}^{(1)}(z) f_{l/l}\left(\frac{\xi}{z}, \mu^2\right) \right]$$

$$P_{q\gamma}^{(0)}(x) = x^2 + (1-x)^2$$

$$P_{ql}^{(1)}(x) = -2 + \frac{20}{9x} + 6x - \frac{56x^2}{9} + \left(1 + 5x + \frac{8x^2}{3}\right)\log(x) - (1+x)\log^2(x)$$

• Boundary condition $f_{q/l}(\xi, m_l^2) = 0$

$$\begin{split} f_{q/l}(\xi,\mu^2) &= e_q^2 \left(\frac{\alpha}{2\pi}\right)^2 \left\{ \left[\frac{1}{2} + \frac{2}{3\xi} - \frac{\xi}{2} - \frac{2\xi^2}{3} + (1+\xi)\log\xi\right] \log^2\left(\frac{\mu^2}{m_l^2}\right) \right. \\ &+ \left[-3 - \frac{2}{\xi} + 7\xi - 2\xi^2 + \left(-5 - \frac{8}{3\xi} + \xi + \frac{8\xi^2}{3}\right)\log\xi - 3(1+\xi)\log^2\xi\right] \log\left(\frac{\mu^2}{m_l^2}\right) \right\} \end{split}$$

G. Abelof

1-JETTINESS SUBTRACTION

Starting point: dimensionless 1-jettiness event shape [Kang, Lee, Stewart '13]

1-JETTINESS SUBTRACTION

• Introduce internal cutoff \mathcal{T}_1^{cut} . Partition RR and RV phase space

$$d\sigma_{ql}^{(2,2)} = \int d\Phi_{\rm B} |\mathcal{M}_{\rm VV}|^2 + \int d\Phi_{\rm R} |\mathcal{M}_{\rm RV}|^2 \theta_1^< + \int d\Phi_{\rm RR} |\mathcal{M}_{\rm RR}|^2 \theta_1^< + \int d\Phi_{\rm R} |\mathcal{M}_{\rm RV}|^2 \theta_1^> + \int d\Phi_{\rm RR} |\mathcal{M}_{\rm RR}|^2 \theta_1^> \equiv d\sigma_{ql}^{(2,2)} (\mathcal{T}_1 < \mathcal{T}_1^{cut}) + d\sigma_{ql}^{(2,2)} (\mathcal{T}_1 > \mathcal{T}_1^{cut})$$

$$\theta_1^{<} = \theta(\mathcal{T}_1^{cut} - \mathcal{T}_1) \qquad \theta_1^{>} = \theta(\mathcal{T}_1 - \mathcal{T}_1^{cut})$$

G. Abelof

NNLO CROSS SECTION BELOW 1-JETTINESS CUT

All-orders resummation of \mathcal{T}_1 in DIS for the limit $\mathcal{T}_1 \ll 1$ known [Kang, Lee, Stewart '13]

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\mathcal{T}_{1}} = \int \mathrm{d}\Phi_{B} \int \mathrm{d}t_{J} \mathrm{d}t_{B} \mathrm{d}k_{S} \,\delta\left(\mathcal{T}_{1} - \frac{t_{J}}{Q^{2}} - \frac{t_{B}}{Q^{2}} - \frac{k_{S}}{Q}\right)$$

$$\times \sum_{q} J_{q}(t_{J}, \mu) \,S(k_{S}, \mu) H_{q}(\Phi_{2}, \mu) B_{q}(t_{B}, x, \mu) + \dots$$
Power corrections $\propto \mathcal{T}_{1}^{cut}$

Small for small cutoffs

◆Expand through $\mathcal{O}\left(\alpha^2 \alpha_s^2\right)$ to obtain $d\sigma_{ql}^{(2,2)}(\mathcal{T}_1 < \mathcal{T}_1^{cut})$, $d\sigma_{gl}^{(2,2)}(\mathcal{T}_1 < \mathcal{T}_1^{cut})$ ◆All pieces known to this order

- * Jet function $J_q(t_J, \mu)$ [Becher and Neubert '06; Becher and Bell '10]
- * Beam function $B_q(t_B, x, \mu)$ [Gaunt, Stahlhofen, Tackmann '14]
- * Soft function $S(k_S, \mu)$ [Boughezal, Liu, Petriello '15]
- * Hard function $H_q(\Phi_2, \mu)$ [Matsuura, van der Marck, van Neerven '88 ; Becher, Neubert, Pecjak '06]

G. Abelof

DISTRESS: DIS Through a Robust Enabling Subtraction Scheme

Parton-level event generator for inclusive jet production in eN collisions at NNLO
Fully differential

Arbitrary cuts on jet and final state lepton

Parallelized Monte Carlo integration

G. Abelof

VALIDATION

Inclusive DIS cross section with $\sqrt{s} = 100 \text{ GeV}$, $Q^2 > 100 \text{ GeV}^2$, $\mu_R = \mu_F = Q$ and CT14nnlo PDFs

q channel *q* channel Check cutoff independence of 0.000 result -0.002 Determine range of cutoffs for which power corrections are -0.004negligibly small r_{NNLO}/σ_{LO} -0.006 Agreement with NNLO inclusive cross section -0.008computed with structure functions -0.010[Zijlstra, van Neerven '92; Moch, Vermaseren '99] $-0.012\frac{1}{10^{-5}}$ 10^{-5} 10^{-4} 5×10^{-5} $\mathcal{T}_1^{\mathrm{cut}}$ $\mathcal{T}_1^{\mathrm{cut}}$

G. Abelof

RESULTS

Using DISTRESS, we produced differential distributions with proposed EIC settings

- ★ √s = 100 GeV
 ★ $p_T^{jet} > 5 \text{ GeV}$ ★ $|\eta_{jet}| < 2$ ★ Anti-kt jet algorithm with R = 0.5★ $\mu_R = \mu_F = p_T^{jet}$ ★ α = 1/137.036
 ★ $m_e = 0.511 \text{ MeV}$
- CT14 (LO, NLO, NNLO) PDF sets

G. Abelof

RESULTS: Q^2 DISTRIBUTION

*NNLO correction is small in DIS region (high Q^2) region, but large (50%) at $Q^2 \sim 0$ *Shift is positive for $Q^2 \sim 0$, negative in DIS region

G. Abelof

RESULTS: JET TRANSVERSE MOMENTUM DISTRIBUTION

*NNLO correction is large and positive for low p_T^{jet} , small and negative for large p_T^{jet} *NNLO shows an increase in scale dependence at low p_T^{jet}

G. Abelof

RESULTS: JET TRANSVERSE MOMENTUM DISTRIBUTION

- * qq and gq channels dominate the NNLO correction (left) and the cross section at NNLO (right) for low p_T^{jet}
- *They are LO at $\mathcal{O}(\alpha^2 \alpha_s^2)$ and drive the increase in the scale dependence of the NNLO cross section at low p_T^{jet}
- No single partonic channel furnishes a good approximation to the shape of the full NNLO correction

G. Abelof

RESULTS: JET RAPIDITY DISTRIBUTION

♦NNLO correction is small for $\eta_{jet} < 1$, sizable as $\eta_{jet} \rightarrow 2$ ♦NNLO scale uncertainty in the region $\eta_{jet} < 0$ larger that at NLO

G. Abelof

RESULTS: JET RAPIDITY DISTRIBUTION

Large scale uncertainty in the region $\eta_{jet} < 0$ is driven by the quark-quark channel, which is effectively LO at $\mathcal{O}(\alpha^2 \alpha_s^2)$

As $\eta_{jet} \rightarrow 2$ the NNLO correction is largely dominated by the gluon-photon channel

No single partonic channel furnishes a good approximation to the shape of the full NNLO correction

G. Abelof

SUMMARY

- We have performed a full calculation of the $O(\alpha^2 \alpha_s^2)$ perturbative corrections to jet production in electron-nucleon collisions, using N-jettiness subtraction
- We have shown that upon integration over the final-state hadronic phase we reproduce the known NNLO result for the inclusive structure functions
- We have implemented our results in a fully differential parton-level event generator DISTRESS
- We have shown numerical results for jet production at a proposed future EIC
 - * Several new partonic channels appear at the $O(\alpha^2 \alpha_s^2)$ level, which have an important effect on the kinematic distributions of the jet
 - No single partonic channel furnishes a good approximation to the full NNLO result
 - * The magnitudes of the corrections we find indicate that higher-order predictions will play an important role in achieving the precision needed to understand the proton structure at the EIC

PHOTON AND QUARK IN LEPTON DISTRIBUTIONS

G. Abelof