Simplifications with Helicity at Leading and Next-to-Leading Power

Ian Moult
Berkeley Center For Theoretical Physics/ Lawrence Berkeley Laboratory

Outline

- Leading Power:
- Organizing SCET Calculations with Helicity

- Next-to-Leading Power:
- SCET at Subleading Power
- Symmetry Constraints from Helicity Conservation
- Subleading Power Calculations

Leading Power

SCET

- SCET describes soft and collinear radiation in the presence of a hard scattering.

- Allows for a factorized description: Hard, Jet, Beam, Soft functions

$$
\frac{d \sigma}{d \mathcal{M}_{1} \cdots}=\sum_{\{\kappa\}} \operatorname{tr} H_{\kappa} I \mathcal{I} J_{\kappa_{i}} \otimes \cdots \otimes J_{\kappa_{j}} S_{\kappa_{s}} \otimes f_{p / i} f_{p / j} \otimes f_{k \rightarrow H} \otimes \cdots \otimes f_{l \rightarrow H} \otimes F
$$

SCET

- Hard scattering is described by operators in EFT

- At leading power, operator contains one quark or gluon jet field for each well separated jet direction.

$$
\begin{aligned}
& \chi_{n, \omega}(x)=\left[\delta\left(\omega-\overline{\mathcal{P}}_{n}\right) W_{n}^{\dagger}(x) \xi_{n}(x)\right] \\
& \mathcal{B}_{n, \omega \perp}^{\mu}(x)=\frac{1}{g}\left[\delta\left(\omega+\overline{\mathcal{P}}_{n}\right) W_{n}^{\dagger}(x) \mathrm{i} D_{n \perp}^{\mu} W_{n}(x)\right]
\end{aligned}
$$

SCET

- Many applications involve higher multiplicity:

- Becomes tedious to make bases in terms of standard Lorentz/ Dirac structures:

$$
\mathcal{O}^{a b c \bar{\alpha} \beta}=\mathcal{B}_{n_{1} \perp}^{\mu a} \mathcal{B}_{n_{2} \perp}^{\nu b} \mathcal{B}_{n_{3} \perp}^{\sigma c} \bar{\chi}_{n_{4}}^{\bar{\alpha}} \Gamma_{\mu \nu \sigma} \chi_{n_{5}}^{\beta}
$$

Helicity Amplitudes

- Well known simplicity in on-shell helicity amplitudes
- Compact expressions.
- Manifest symmetry properties.
- e.g. $4 g$ scattering:

$$
\begin{gathered}
\mathcal{A}\left(1^{-} 2^{-} 3^{+} 4^{+}\right)=g^{2} \sum_{\sigma \in S_{n} / \mathbb{Z}_{n}} \operatorname{Tr}\left(T^{a_{\sigma(1)}} \ldots T^{\left.a_{\sigma(4)}\right)}\right) A\left(\sigma\left(1^{-}\right), \ldots, \sigma\left(4^{+}\right)\right)={ }^{-}+\prod_{+}^{+}+{ }^{+} \\
A\left(1^{-}, 2^{-}, 3^{+}, 4^{+}\right)=\frac{\langle 12\rangle^{4}}{\langle 12\rangle\langle 23\rangle\langle 34\rangle\langle 41\rangle}
\end{gathered}
$$

- Can we use similar tricks at the operator level?

Helicity Operators in SCET

- SCET formulated as expansion about lightlike directions n_{i} :

$$
\mathcal{B}_{n_{i} \perp}, \chi_{n_{i}, \omega}
$$

- Define natural directions to define helicities w.r.t.
- Can define jet fields of definite helicity:

Gluons: $\mathcal{B}_{i \pm}^{a}=-\varepsilon_{\mp \mu}\left(n_{i}, \bar{n}_{i}\right) \mathcal{B}_{n_{i}, \omega_{i} \perp_{i}}^{a \mu}$

Quark Bilinear: $\quad J_{i j+}^{\bar{\alpha} \beta}=\frac{\sqrt{2} \varepsilon_{-}^{\mu}\left(n_{i}, n_{j}\right)}{\sqrt{\omega_{i} \omega_{j}}} \frac{\bar{\chi}_{i+}^{\bar{\alpha}} \gamma_{\mu} \chi_{j+}^{\beta}}{\left\langle n_{i} n_{j}\right\rangle}$,

$$
J_{i j-}^{\bar{\alpha} \beta}=-\frac{\sqrt{2} \varepsilon_{+}^{\mu}\left(n_{i}, n_{j}\right)}{\sqrt{\omega_{i} \omega_{j}}} \frac{\bar{\chi}_{i-}^{\bar{\alpha}} \gamma_{\mu} \chi_{j-}^{\beta}}{\left[n_{i} n_{j}\right]}
$$

An Example

- Example: $p p->3$ jets, $q \bar{q} g g g$ channel.
- With standard operators, minimal basis hard to find, hard to match to:
$\mathcal{O}^{a b c \bar{\alpha} \beta}=\mathcal{B}_{n_{1} \perp}^{\mu a} \mathcal{B}_{n_{2} \perp}^{\nu b} \mathcal{B}_{n_{3} \perp}^{\sigma c} \bar{\chi}_{n_{4}}^{\bar{\alpha}} \Gamma_{\mu \nu \sigma} \chi_{n_{5}}^{\beta}$

- Helicity operators trivialize constructing a basis:

$$
\begin{aligned}
\mathcal{O}_{+++(\pm)}^{a b c \bar{\alpha} \beta} & =\frac{1}{3!} \mathcal{B}_{1+}^{a} \mathcal{B}_{2+}^{a} \mathcal{B}_{3+}^{a} J_{45 \pm}^{\bar{\alpha} \beta}, \mathcal{O}_{++-(\pm)}^{a b c \bar{\alpha} \beta}=\frac{1}{2} \mathcal{B}_{1+}^{a} \mathcal{B}_{2+}^{a} \mathcal{B}_{3-}^{a} J_{45 \pm}^{\bar{\alpha} \beta} \\
\mathcal{O}_{--+(\pm)}^{a b c \bar{\alpha} \beta}= & \frac{1}{2} \mathcal{B}_{1-}^{a} \mathcal{B}_{2-}^{a} \mathcal{B}_{3+}^{a} J_{45 \pm}^{\bar{\alpha} \beta}, \mathcal{O}_{---(\pm)}^{a b c \bar{\alpha} \beta}=\frac{1}{3!} \mathcal{B}_{1-}^{a} \mathcal{B}_{2-}^{a} \mathcal{B}_{3-}^{a} J_{45 \pm}^{\bar{\alpha} \beta}
\end{aligned}
$$

- Wilson coefficients, $C_{+\cdots-}^{a_{1} \cdots \bar{\alpha} \beta}$ found by matching.

Matching, RG and Symmetries

- Basis has many nice features:
- Wilson coefficients in EFT are given by finite part of color stripped helicity amplitudes
\Longrightarrow Trivial to interface with on-shell helicity amplitudes.

$$
C_{+\cdots-}^{a_{1} \cdots \bar{\alpha} \beta}=-\mathrm{i} \mathcal{A}_{\mathrm{fin}+\cdots-}
$$

- Leading power SCET interactions preserve helicity of each sector \Longrightarrow RG evolution diagonal in helicity space (and no evanescent operators)

- Many symmetries manifest: C / P, angular momentum conservation, crossing symmetry.

Applications

Off-shell Higgs Production with a Jet Veto

Signal-Background Interference

[Moult,Stewart]

Matching For Jet Substructure $\bar{\chi}_{t+}^{\bar{\alpha}}=\sum_{\lambda_{g}} \int d \omega_{1} d \omega_{2} C_{+\lambda_{g}}^{a \beta \bar{\gamma}}\left(X_{n_{1}} \mathcal{B}_{1 \lambda_{g}} X_{n_{1}}^{\dagger}\right)^{a}\left(\bar{\chi}_{2+} X_{n_{2}}^{\dagger}\right)^{\bar{\beta}} V_{n_{t}}^{\gamma \bar{\alpha}}$

[Pietrulewicz, Tackmann, Waalewiig], [Larkoski, Moult, Neill $]$

Next-to-Leading Power

Introduction

- A large class of observables τ (p_{T}, threshold, event shapes, etc.) exhibit singularities in perturbation theory:

$$
\begin{aligned}
\frac{\mathrm{d} \sigma}{\mathrm{~d} \tau} & =\sum_{n=0}^{\infty}\left(\frac{\alpha_{s}}{\pi}\right)^{n} \sum_{m=0}^{2 n-1} c_{n m}^{(0)}\left(\frac{\log ^{m} \tau}{\tau}\right)_{+} \\
& +\sum_{n=1}^{\infty}\left(\frac{\alpha_{s}}{\pi}\right)^{n} \sum_{m=0}^{2 n-1} c_{n m}^{(2)} \log ^{m} \tau \\
& +\sum_{n=1}^{\infty}\left(\frac{\alpha_{s}}{\pi}\right)^{n} \sum_{m=0}^{2 n-1} c_{n m}^{(4)} \tau \log ^{m} \tau \\
& +\cdots
\end{aligned}
$$

- Expansion about singular (soft/collinear) limits
- Simplifies structure/ calculation
- Often gives phenomenologically large contributions
- Reveals universal structures in gauge theories

Leading Power

- Observables can be organized in an expansion in τ.

$$
\frac{\mathrm{d} \sigma}{\mathrm{~d} \tau}=\frac{\mathrm{d} \sigma^{(0)}}{\mathrm{d} \tau}+\frac{\mathrm{d} \sigma^{(2)}}{\mathrm{d} \tau}+\frac{\mathrm{d} \sigma^{(4)}}{\mathrm{d} \tau}+\cdots
$$

- Leading power well understood for a wide variety of observables.

$$
\begin{aligned}
\frac{\mathrm{d} \sigma^{(0)}}{\mathrm{d} \tau} & =\sum_{n=0}^{\infty}\left(\frac{\alpha_{s}}{\pi}\right)^{n} \sum_{m=0}^{2 n-1} c_{n m}^{(0)}\left(\frac{\log ^{m} \tau}{\tau}\right)_{+} \\
& =H^{(0)} J_{\tau}^{(0)} \otimes J_{\tau}^{(0)} \otimes S_{\tau}^{(0)}+\mathcal{O}\left(\frac{\Lambda_{\mathrm{QCD}}}{Q \tau}\right)
\end{aligned}
$$

Subleading Power

- Subleading powers much less well understood.
- Are there factorization theorems at each power?

$$
\frac{\mathrm{d} \sigma^{(n)}}{\mathrm{d} \tau}=\sum_{j} H_{j}^{\left(n_{H j}\right)} \otimes J_{j}^{\left(n_{j j}\right)} \otimes S_{j}^{\left(n_{S_{j}}\right)}
$$

- What is the degree of universality?
- Start by looking at Next-to-Leading Power (NLP):

$$
\frac{\mathrm{d} \sigma^{(2)}}{\mathrm{d} \tau}=\sum_{n=1}^{\infty}\left(\frac{\alpha_{s}}{\pi}\right)^{n} \sum_{m=0}^{2 n-1} c_{n m}^{(2)} \log ^{m} \tau
$$

Soft Collinear Effective Theory

- SCET has proven to be a powerful framework for studying factorization.
- Allows a systematic expansion about soft $p_{s} \sim\left(\lambda^{2}, \lambda^{2}, \lambda^{2}\right)$ and collinear $p_{c} \sim\left(1, \lambda, \lambda^{2}\right)$ limits in a power counting parameter $\lambda \sim \sqrt{\tau}$.
- In Collider context has been applied primarily at leading power.
- Fields/Lagrangians have a definite power counting in λ.

Operator	$\mathcal{B}_{n_{i} \perp}^{\mu}$	$\chi_{n_{i}}$	$\mathcal{P}_{\perp}^{\mu}$	$q_{u s}$	$D_{u s}^{\mu}$
Power Counting	λ	λ	λ	λ^{3}	λ^{2}

$$
\mathcal{L}_{\mathrm{SCET}}=\mathcal{L}_{\text {hard }}+\mathcal{L}_{\text {dyn }}=\sum_{i \geq 0} \mathcal{L}_{\text {hard }}^{(i)}+\sum_{i \geq 0} \mathcal{L}^{(i)}
$$

Leading Power SCET

- Leading Power SCET:
- Leading Power Hard Scattering Operators: $\bar{\chi}_{n} \Gamma \chi_{\bar{n}}$
- Leading power Feynman rules (eikonal/ collinear)
- Measurement function/ kinematics expanded to leading power

Subleading Power SCET

- Subleading Power in SCET:
- Subleading Lagrangian Insertions

- Corrects dynamics of propagating soft/collinear particles.

Subleading Power SCET

- Subleading Power in SCET:
- Subleading Lagrangian Insertions
- Subleading Hard Scattering Operators

- Local Corrections to scattering vertex. Multiple fields per collinear sector.

Subleading Power SCET

- Subleading Power in SCET:
- Subleading Lagrangian Insertions
- Subleading Hard Scattering Operators
- Subleading Measurement function

- Corrects definition of measurement: $\tau=\tau^{(0)}+\tau^{(1)}+\tau^{(2)}$

Subleading Lagrangian

- Subleading Lagrangians are universal, and known.
- Correct the dynamics of soft and collinear particles. e.g.
- Correction to eikonal emission:

$$
\mathcal{L}_{\chi_{n}}^{(2)}=\bar{\chi}_{n}\left(i \not D_{u s \perp} \frac{1}{\overline{\mathcal{P}}} i D_{u s \perp}-i \phi_{n \perp} \frac{i \bar{n} \cdot D_{u s}}{(\overline{\mathcal{P}})^{2}} i \phi_{n \perp}\right) \frac{\hbar}{2} \chi_{n}--\frac{1}{\mathcal{L}^{(2)}}-
$$

- Emission of soft quarks:

$$
\mathcal{L}_{\chi_{n} q_{u s}}^{(1)}=\bar{\chi}_{n} \frac{1}{\overline{\mathcal{P}}} g \not \mathcal{B}_{n \perp} q_{u s}+\text { h.c. }
$$

Subleading Hard Scattering Operators

- Hard Scattering Operators describe process dependence.
- Obtained by matching calculation.
- Need a complete basis of operators consistent with symmetries.
- Consider $e^{+} e^{-} \rightarrow$ dijets:

Subleading Hard Scattering Operators

- Want basis to all orders in α_{s}. Finite by power counting.
- Multiple collinear fields per sector. $\mathcal{O}\left(\lambda^{0}\right)$:

$\mathcal{O}\left(\lambda^{1}\right):$

$\mathcal{O}\left(\lambda^{2}\right):$

Organize Using Helicities

- Operators, and interferences easily organized in terms of helicities.
- In SCET, all fields expanded about a common axis.
- Interesting constraints at subleading powers.
- Multiple collinear fields per sector:

- Wilson coefficient vanishes by basic QM.

Organize Using Helicities

- Operators, and interferences easily organized in terms of helicities.
- In SCET, all fields expanded about a common axis.
- Interesting constraints at subleading powers.
- Multiple collinear fields per sector:

- Spinor helicity encodes spin projections (Wigner-D functions).

Organize Using Helicities

- Operators, and interferences easily organized in terms of helicities.
- In SCET, all fields expanded about a common axis.
- Interesting constraints at subleading powers.
- Multiple collinear fields per sector:

- Spinor helicity encodes spin projections (Wigner-D functions).
- Also strong constraints for $g g \rightarrow H$

Relevant Hard Scattering Operators

- For leading log (singularity), $\alpha_{s}^{n} \log ^{2 n-1}(\tau)$, two relevant hard scattering operators:
qg In Same Sector
$q \bar{q}$ In Same Sector

- $q \bar{q}$ in same sector has no LP analog.

Matching

- Wilson coefficients, $C\left(\omega_{1}, \omega_{2}\right)$ can be obtained by matching.
- $C\left(\omega_{1}, \omega_{2}\right)$ depends on large momentum fraction, i.e. $z, 1-z$.

$=C\left(\omega_{1}, \omega_{2}\right)$

Fixed Order Thrust at NLP

- Begin by studying structure in fixed order pert theory.
- Most interested in the leading log: $\alpha_{s} \log (\tau), \alpha_{s}^{2} \log ^{3}(\tau), \cdots$
- Simple playground is Thrust in $e^{+} e^{-}$

$$
\tau=1-\max _{\hat{t}} \frac{\sum_{i}\left|\hat{t} \cdot \vec{p}_{i}\right|}{\sum_{i}\left|\vec{p}_{i}\right|} \leftarrow: \frac{1}{2}: \theta_{c c} \sim \sqrt{\tau}
$$

- Exact NLO result known.

NLO Thrust at NLP

- Calculate one-loop graphs with NLP operators/ Lagrangians.

Collinear Gluon

Soft Gluon

$$
\begin{aligned}
\frac{1}{\sigma_{0}} \frac{d \sigma_{1}^{(2)}}{d \tau} & =8 C_{F}\left[\frac{1}{\epsilon}+\log \left(\frac{\mu^{2}}{Q^{2} \tau}\right)\right]-8 C_{F}\left[\frac{1}{\epsilon}+\log \left(\frac{\mu^{2}}{Q^{2} \tau^{2}}\right)\right] \\
& =8 C_{F} \log (\tau)
\end{aligned}
$$

NLO Thrust at NLP

- Calculate one-loop graphs with NLP operators/ Lagrangians.

Collinear Quarks

Soft Quark

$$
\begin{aligned}
\frac{1}{\sigma_{0}} \frac{d \sigma_{1}^{(2)}}{d \tau} & =-4 C_{F}\left[\frac{1}{\epsilon}+\log \left(\frac{\mu^{2}}{Q^{2} \tau}\right)\right]+4 C_{F}\left[\frac{1}{\epsilon}+\log \left(\frac{\mu^{2}}{Q^{2} \tau^{2}}\right)\right] \\
& =-4 C_{F} \log (\tau)
\end{aligned}
$$

NLO Thrust at NLP

- Sum four graphs, reproduces the NLP piece of well known NLO thrust result:

Total

$$
\frac{1}{\sigma_{0}} \frac{d \sigma_{1}^{(2)}}{d \tau}=4 C_{F} \log (\tau)
$$

- Result gives directly (no expansions) the NLP contribution.

NNLO Thrust at NLP

- Proceed to NNLO.
- Dress NLP emission with leading power emission (collinear, soft, hard).

Quark Channel
Gluon Channel

$$
\frac{1}{\sigma_{0}} \frac{d \sigma_{2}^{(2)}}{d \tau}=c_{1} C_{F}^{2} \log ^{3}(\tau)
$$

$$
\frac{1}{\sigma_{0}} \frac{d \sigma_{2}^{(2)}}{d \tau}=c_{2}\left(c_{3} C_{F}^{2}+C_{F} C_{A}\right) \log ^{3}(\tau)
$$

Total

$$
\frac{1}{\sigma_{0}} \frac{d \sigma_{2}^{(2)}}{d \tau}=d_{1}\left(C_{F} C_{A}+d_{2} C_{F}^{2}\right) \log ^{3}(\tau)
$$

NNLO Thrust at NLP

- Interesting color structures for leading log (divergence).
- At LP, leading logarithmic divergence $\sim C_{F}^{n}$.
- More interesting structure at NLP.

Total

$$
\frac{1}{\sigma_{0}} \frac{d \sigma_{2}^{(2)}}{d \tau}=d_{1}\left(C_{F} C_{A}+d_{2} C_{F}^{2}\right) \log ^{3}(\tau)
$$

Applications

- Goal: Understand all orders structure of NLP logs. Derive RG, etc.
- Fixed order is first step in understanding this.
- Already at fixed order NLP logs have interesting applications.

Application to N-jettiness Subtractions

- NNLO calculations require cancellation of real/virtual poles.
- Use a physical resolution variable to slice phase space.
- Recently a general method allowing for jets in final state, based on N-jettiness (see also Xiaohui Liu's talk)
[Boughezal, Focke, Petriello, Liu]
[Gaunt, Stahlhofen,Tackmann, Walsh]

$$
\sigma(X)=\int_{0} d \mathcal{T}_{N} \frac{d \sigma(X)}{d \mathcal{T}_{N}}=\int_{0}^{\mathcal{T}_{N}^{\text {cut }}} d \mathcal{T}_{N} \frac{d \sigma(X)}{d \mathcal{T}_{N}}+\int_{\substack{\mathcal{T}_{N}^{\text {cut }}}} d \mathcal{T}_{N} \frac{d \sigma(X)}{d \mathcal{T}_{N}}
$$

N-Jettiness

- N-jettiness: Inclusive event shape to identify $N-2$ jets.

$$
\tau_{N}=\frac{2}{Q^{2}} \sum_{k} \min \left\{q_{a} \cdot p_{k}, q_{b} \cdot p_{k}, q_{1} \cdot p_{k}, \cdots, q_{N} \cdot p_{k}\right\}
$$

- $\tau_{N} \ll 1 \Longrightarrow N-2$ isolated jets.
- All orders factorization theorem:

$$
\frac{d \sigma}{d \tau_{N}}=H B_{a} \otimes B_{b} \otimes S \otimes J_{1} \otimes \cdots \otimes J_{N-1}+\mathcal{O}\left(\tau_{N}\right)
$$

N -jettiness Subtractions

$$
\sigma(X)=\int_{0} d \mathcal{T}_{N} \frac{d \sigma(X)}{d \mathcal{T}_{N}}=\int_{0}^{\mathcal{T}_{N}^{\text {cut }}} d \mathcal{T}_{N} \frac{d \sigma(X)}{d \mathcal{T}_{N}}+\int_{\substack{\mathcal{T}_{N}^{\text {cut }}}} d \mathcal{T}_{N} \frac{d \sigma(X)}{d \mathcal{T}_{N}}
$$

$$
\int_{0}^{\mathcal{T}_{N}^{\text {cut }}} d \mathcal{T}_{N} \frac{d \sigma(X)}{d \mathcal{T}_{N}}
$$

$$
\int_{\mathcal{T}_{N}^{\text {cut }}} d \mathcal{T}_{N} \frac{d \sigma(X)}{d \mathcal{T}_{N}}
$$

Compute using factorization in soft/collinear limits:

Additional jet resolved. Use NLO subtractions.

$$
\frac{d \sigma}{d \tau_{N}}=H B_{a} \otimes B_{b} \otimes S \otimes J_{1} \otimes \cdots \otimes J_{N-1}
$$

New NNLO Results with N-jettiness

- Impressive new results with jets in the final state: $W / Z / H+j e t ~ a t$ NNLO

- Implemented in MCFM for color singlet production at NNLO.
- Conceptually simple, extendable to higher orders.

Power Corrections

- Current subtractions use leading power result in singular region.
- Power corrections are dropped \Longrightarrow small values of $\mathcal{T}_{N}^{\text {cut }}$ necessary.

> Estimated Missing Correction Solid=LP

$$
\begin{aligned}
\frac{\mathrm{d} \sigma}{\mathrm{~d} \tau} & =\sum_{n=0}^{n=\infty}\left(\frac{\alpha_{s}}{\pi}\right)^{n} \sum_{n=0}^{2 n-1} c_{n m}^{(0)}\left(\frac{\log ^{m} \tau}{\tau}\right)_{+} \\
& +\sum_{n=0}^{n=\infty}\left(\frac{\alpha_{s}}{\pi}\right)^{n} \sum_{n=0}^{2 n-1} c_{n m}^{(2)} \log ^{m} \tau \\
& +\sum_{n=0}^{n=\infty}\left(\frac{\alpha_{s}}{\pi}\right)^{n} \sum_{n=0}^{2 n-1} c_{n m}^{(2)} \tau \log ^{m} \tau \\
& +\cdots
\end{aligned}
$$

- Use of a physical resolution variable \Longrightarrow power corrections analytically tractable.

NLO Beam Thrust at NLP

- Start with simplest case: 0-jettiness (beam thrust)
- All hard work in setup done for thrust: operators, Lagrangian, identical.
- Simply cross results, and take into account pdfs, measurement...
$q \bar{q}$ channel

$q g$ channel

NLO Beam Thrust at NLP

- Comparison to fixed order (MCFM):
$\begin{array}{ll} & \text { NLO } \\ \ldots & \text { Analytic Power Correction }\end{array}$
Remainder

NNLO 0-Jettiness at NLP

- NNLO result for both $q \bar{q}$ and $q g$ also obtained by crossing, taking into account pdf, and measurement.
- Find good agreement with NNLO fixed order (MCFM):

Conclusions

- Helicity can be used to organize operators in SCET at both LP and NLP.
- LP: Facilitates matching to fixed order calculations.
\Longrightarrow Applications to processes with more legs.

- NLP: Simplifies organization of operator bases.
\Longrightarrow Fixed order power corrections for NNLO subtractions.

Thanks!

