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¡  Motivation:	an	overview	of	leading	particle	and	jet	modification	
measurements.	Energy	loss	theory	in	the	past	decade:	successes	
and	challenges	

	
¡  An	effective	theory	for	jet	propagation	in	matter	SCETG	,	gauge	

invariance	of	jet	broadening	and	energy	loss	results.	Factorization	
of	medium-induced	radiative	corrections.	Medium-induced	
parton	showers	

¡  Connection	between	the	full	SCETG	in-medium	evolution	and	the	
traditional	energy	loss	approach.	Insight	from	higher	O(αs

2)	
splitting	functions.	In-medium	DGLAP	evolution		

¡  Selected	SCETG	applications	to	observables:	light	hadron	cross	
sections,	heavy	meson	cross	sections,	jets;	jut	substructure	
observables	–	jet	shapes,	fragmentation	functions	and	soft	
dropped	distributions	

		

	
	



	Introduction,	motivation	
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J.Collins, M.Perry (1975), T.D. Lee, G.C.Wick (1974) 

M.	Stephanov	et	al.	(2009)	



RAA(IAA...) =
YieldAA /〈Nbinary 〉AA

Yieldpp
=

1
〈Nbinary 〉AuAu

dσAuAu /dpTdy
dσ pp /dpTdy

Jet	quenching	in	A+A	collisions	has	
been	regarded	as	one	of	the	most	
important	discoveries	at	RHIC	
• 		Tested	against	alternative	suggestions:	CGC	
and	hadronic	transport	models		✓			

• 	Phenomenologically	very	successful		✓	

Adams, J. et al.  (2003) Adler, S. et al  (2003) 

§ 	Jet	quenching:	suppression	of	inclusive	
particle	production	relative	to	a	binary	scaled	
p+p	result	

M. Gyulassy, et al. (1992) 

Final-state	interaction	origin	
	

Also	tested	at	LHC	with	W/Z	boson	cross	sections	



§ 	Jet	quenching:	to	much	
higher	pT	

§ 	Suppression	of	inclusive	
jets	

§ 	Modified	jet	substructure	

§ 	Advances	in	jet	physics	have	motivated	key	detector	
upgrades	at	RHIC-	sPHENIX.	Probe	different	QGPs,	
possibly	different	coupling	regimes			



¡  Advantage	of	RAA	:	providing	useful	
information	for	the	hot/dense	medium	
within	a	simple	physics	picture	

I(r) = I0e
− dr '/λabs (r ')0

r

∫ = I0e
− dr 'ρ (r ')σ (r ')

0

r

∫

I.V.	et	al	(2002)	

§ 		Difficult	to	make	connection	to	the	standard	
LO,	NLO,	…;	LL,	NLL	…		pQCD	approach	(higher	
orders	and	resummation)	

§ 	There	is	considerable	model	dependence	and	it	
is	difficult	to	systematically	improve	this	approach		

Traditional	energy	loss	
approach	
	



Soft	Collinear	Effective	
Theory	with	Glaubers	



¡  There	is	no	jet	quenching	in	SCET.	Still	a	multiscale	
problem,	but	needs	extension		

¡  Factorization,	with	
modified	J,	B,	S		 S.	Fleming	et	al.		(2015)	

		D.	Pirol	et	al.	(2004)	

		C.	Bauer	et	al.	(2001)	

~ EJ

~ k⊥,q⊥

~ ΛQCD

~ T,gT,...



	
	

§  What	is	missing	in	the	SCET	Lagrangian	is	the	interaction	
between	the	jet	and	the	medium		

§  Kinematics	and	channels	
t	–	jet	broadening	and	energy	loss	
s–	isotropisation	
u	–	backward	hard	scattering	
	

A.	Idilbi	et	al.	(2008)	

§  Operator	formulation	/	
factorization	violation,	BFKL,	
etc	

I.	Rothstein	et	al.	(2016)	



	
	

§  Glauber	gluons	(transverse)	 		A.	Idilbi	et	al.	(2008)	

§  Feynman	rules	for	different	sources	and	gauges	
G.	Ovanesyan	et	al.	(2011)	



G.	Altarelli	et	al.	(1977)	
¡  In	the	vacuum	we	have	the	DGLAP	splitting	

kernels	that	factorize	from	the	hard	scattering	
cross	section	and	are	process	independent	Y.	Dokshitzer	(1977)	

Gribov	et	al.	(1972)	

1. Incoming hadron   (gray bubbles)

➡ Parton distribution function

2. Hard part of the process 

➡ Matrix element calculation at LO, 
NLO, ... level

3. Radiation  (red graphs)

➡ Parton shower calculation

➡ Matching to the hard part

4. Underlying event   (blue graphs)

➡ Models based on multiple 
interaction

5. Hardonization  (green bubbles)

➡ Universal models 

The description of an event is a bit tricky...

H

¡  Splitting	functions	are	
related	to	beam	(B)	and	jet	(J)	
functions	in	SCET		

W.	Waalewjin.	(2014)	



	
	

§  Note	that	a	collinear	Wilson	
line	appears	in	the	Rξ	gauge	

Single	Born	diagrams	

Diagrams	that	need	to	be	
evaluated	to	first	order	in	opacity	
	

We	have	two	sectors	of	the	theory	–	
different	gauges	

		M.	Gyulassy	et	al.	(2001)	

Classes	of	diagrams	(single	Born,	
double	Born).	Reaction	Operator	



	
	

		G.	Ovanesyan	et	al.	(2011)	

Double	Born		
diagrams	

A.	Majumder	et	al.		(2009)	

A.	Idilbi	et	al.		(2010)	
¡  New	Feynman	

rule	

¡  The	lightcone	
gauge	



	
	

§  Proof	of	
gauge	
invariance	

		G.	Ovanesyan	et	al.	,			
			2011	
	

Rξ	 A+	 Hyb.	

W+	 ✔	 ✖	 ✖	

Tn	 ✖	 ✔	 ✖	

N.B. x→1− x

� 

A,...D,Ω1...Ω5 − functions(x,k⊥,q⊥ )

� 

dN(tot.)
dxd2k⊥

=
dN(vac.)
dxd2k⊥

+
dN(med.)
dxd2k⊥
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¡  In	the	soft	limit	we	recover	
the	GLV	results	

¡  Only	in	this	limit	there	is	a	
natural	energy	loss	
interpretation		(a	leading	
parton	loses	energy)			

Off-diagonal	term	

Diagonal	term	

But	beyond	this	limit,	new	way	of	thinking		
is	required,	parton	showers,	cascades,	evolution		



F.	Ringer	et	al	.	(2016)	

¡  You	see	the	dead	cone	effects	

¡  You	also	see	that	it	depends	on	
the	process	–	it	not	simply	x2m2	
everywhere:			x2m2,	(1-x)2m2,	m2	

3	splitting	functions	(g	to	gg	is	the	same)	

The		process	is	not	written	Q	to	gQ	but	it	should	have	been	since		x	goes	to	1-x		

Dokshitzer	et	al	.	(2001)	
J Jν,b

p0

k

p

k

p0
pJ Jν,b

p0

k

p

k

p0
p

The	medium-induced	splitting	kernels	are	now	derived	(1st	order	in	opacity).	More	
complicated	than	the	vacuum	ones.	Have	been	numerically	evaluated	



F.	Ringer	et	al	.	(2016)	

¡  Full	massive	in-
medium	
splitting	
functions		now	
available	

¡  Can	be	
evaluated	
numerically	

Kinematic	variables	



Higher	order	corrections	
and	application	of	
cascades	



J J JJ

(µ2, a2, p2) (µ1, a1, p1)

1) 2) 3) 4)
p3p0

Figure 2: Feynman diagrams in SCET that contribute to 1 ! 3 splitting q ! ggq and as a result to
e↵ective vertex �.

where ⇢
0

is a real number, then we automatically get the factorized formula, equivalent to

Eq. (2.6). Indeed, plugging Eq. (2.7) into Eq. (2.4) and comparing with Eq. (2.3) and Eq. (2.6)

we find:

hP̂
g1g2q3i =

z
3

s2
123

4g4
⇢
0

, (2.8)

where z
i

= n̄·p
i

/n̄·(p
1

+ p
2

+ p
3

) = n̄·p
i

/n̄·p
0

, and s
123

= (p
1

+ p
2

+ p
3

)2. It is convenient to

define the following transverse vectors:

Uj

Q1,Q2
= n̄ · p

0

 

Qj

1?
n̄ · Q

1

�
Qj

2?
n̄ · Q

2

!

=
Qj

1?
z
Q1

�
Qj

2?
z
Q2

, (2.9)

where four-vectors Q
1

and Q
2

are arbitrary linear combinations of p
1

, p
2

, p
3

. In order to

compare our result to [1] we relate quantities s
ij

⌘ (p
i

+ p
j

)2 to newly defined vectors:

s
13

= z
1

z
3

U2

p1,p3
, s

23

= z
2

z
3

U2

p2,p3
, s

12

= z
1

z
2

U2

p1,p2
. (2.10)

Note that out of the six transverse vectors that appear in vacuum Feynman diagrams (see be-

low): U
p1,p3 ,Up2,p3 ,Up1,p2 ,Up2,p1+p3 ,Up1,p2+p3 ,Up1+p2,p3 only two are linearly independent.

They all can be written as linear combinations of U
p1,p3 ,Up2,p3 and consequently any product

of these six vectors can be written as combination of s
13

, s
23

, s
12

with coe�cients that depend

on z
1

, z
2

, z
3

.

2.2 Individual contribution from each diagram

In Figure 2 all the diagrams that contribute to e↵ective vertex � (see Figure 1) are shown.

Identifying contribution �
i

to � from each of four diagrams correspondingly is a straightfor-

ward exercise of application of Feynman rules of SCET and polarization vectors in light-cone

gauge given in Eq. (2.1). Another trick we use is to substitute in SCET Feynman rules:

�i

?�j

? = ��ij � i"ij3⌃3, where i, j = 1, 2, and ⌃3 =

 

�3 0

0 �3

!

. (2.11)

In arbitrary representation of gamma matrices the first of the equations above is valid with

properties ⌃3† = ⌃3 and (⌃3)2 = 1, which we use below for squaring of matrix element.

– 3 –

and likewise for P̂ ss′

q̄1q2q3
and P̂ ss′

g1g2q3
. This feature is completely analogous to the O(αS) case

and follows from helicity conservation in the the quark–gluon vector coupling.

The spin-averaged splitting function for non-identical fermions in the final state is

⟨P̂q̄′
1
q′
2
q3
⟩ =

1

2
CF TR

s123

s12

[

−
t212,3

s12s123
+

4z3 + (z1 − z2)2

z1 + z2
+ (1 − 2ϵ)

(
z1 + z2 −

s12

s123

)]

.

(29)

The analogous splitting function in the case of final-state fermions with identical flavour
can be written in terms of that in Eq. (29), as follows

⟨P̂q̄1q2q3
⟩ =

[
⟨P̂q̄′

1
q′
2
q3
⟩ + (2 ↔ 3)

]
+ ⟨P̂ (id)

q̄1q2q3
⟩ , (30)

where

⟨P̂ (id)
q̄1q2q3

⟩ = CF

(
CF −

1

2
CA

){

(1 − ϵ)
(

2s23

s12
− ϵ

)

+
s123

s12

[
1 + z2

1

1 − z2
−

2z2

1 − z3
− ϵ

(
(1 − z3)2

1 − z2
+ 1 + z1 −

2z2

1 − z3

)

− ϵ2(1 − z3)

]

−
s2
123

s12s13

z1

2

[
1 + z2

1

(1 − z2)(1 − z3)
− ϵ

(
1 + 2

1 − z2

1 − z3

)
− ϵ2

]}

+ (2 ↔ 3) . (31)

The splitting function of the remaining quark-decay subprocess can be decomposed
according to the different colour coefficients:

⟨P̂g1g2q3
⟩ = C2

F ⟨P̂ (ab)
g1g2q3

⟩ + CF CA ⟨P̂ (nab)
g1g2q3

⟩ , (32)

and the abelian and non-abelian contributions are

⟨P̂ (ab)
g1g2q3

⟩ =

{
s2
123

2s13s23
z3

[
1 + z2

3

z1z2
− ϵ

z2
1 + z2

2

z1z2
− ϵ(1 + ϵ)

]

+
s123

s13

[
z3(1 − z1) + (1 − z2)3

z1z2
+ ϵ2(1 + z3) − ϵ(z2

1 + z1z2 + z2
2)

1 − z2

z1z2

]

+ (1 − ϵ)
[
ϵ − (1 − ϵ)

s23

s13

]}

+ (1 ↔ 2) , (33)

⟨P̂ (nab)
g1g2q3

⟩ =

{

(1 − ϵ)

(
t212,3

4s2
12

+
1

4
−

ϵ

2

)

+
s2
123

2s12s13

[
(1 − z3)2(1 − ϵ) + 2z3

z2

+
z2
2(1 − ϵ) + 2(1 − z2)

1 − z3

]

−
s2
123

4s13s23
z3

[
(1 − z3)2(1 − ϵ) + 2z3

z1z2
+ ϵ(1 − ϵ)

]

+
s123

2s12

[

(1 − ϵ)
z1(2 − 2z1 + z2

1) − z2(6 − 6z2 + z2
2)

z2(1 − z3)
+ 2ϵ

z3(z1 − 2z2) − z2

z2(1 − z3)

]

+
s123

2s13

[

(1 − ϵ)
(1 − z2)3 + z2

3 − z2

z2(1 − z3)
− ϵ

(
2(1 − z2)(z2 − z3)

z2(1 − z3)
− z1 + z2

)

−
z3(1 − z1) + (1 − z2)3

z1z2
+ ϵ(1 − z2)

(
z2
1 + z2

2

z1z2
− ϵ

)]}

+ (1 ↔ 2) . (34)

6

zi=Ei/(E1+E2+E3)							sij=(pi+pj)2	

q ! ggq

•  We	use	the	Feynman	rules	of	SCET,	
reproduce	Catani-Grazzini’s	result	
exactly.	Only	the	collinear	sector	
enters	

	

0(αs
2)	splitting	functions	in	the	

vacuum	

hPg1g2q3i(z1 ⌧ z2, z3)

⇠ 1

✓401

⇠ 1

✓201

There	is	always	a	regular	/	Abelian	contribution.	
Neither	of	the	5	branchings	is	strictly	angular	
ordered	
	

z1 = 0.03 ⌧ z2, z3



J J JJ

(µ2, a2, p2) (µ1, a1, p1)
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� � � �

J J J
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Figure 3: Single Born diagrams.

3. Splitting q ! ggq in the dense QCD matter

In this section we calculate splitting q ! ggq in the medium to first order in opacity using

e↵ective theory SCET
G

and keeping full z
1

, z
2

, z
3

dependence. The calculation has a lot of

pieces that already have been introduced in the vacuum case above. In particular, because

Glauber gluons do not carry large momenta, the entire part that depends on z
123

is identical

in vacuum and medium calculations of this splitting. Thus we will be using same operators

O
j

given by Eq. (2.16) and the same matrix as in Eq. (2.17) above. The first order of opacity

contains single and contact limit of double Born diagrams as always.

3.1 Single Born diagrams

All single Born diagrams are shown in Figure 3. Amplitude of arbitrary diagram k with

1  k  19 looks like:

A
(1)

k

= �g2 "i1
1

"i2
2

�̄
n,p

✓

Z

d�? C
k

�i1i2
k

I
(1)

k

◆

J, (3.1)

where I
(1)

k

is the corresponding longitudinal integral for this diagram. The factor C
k

and

e↵ective vertex �i1i2
k

depend on topology of the diagram. For arbitrary diagram define N
k

– 6 –

J J JJ
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�� �� ��
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Figure 4: Double Born diagrams.

– 9 –

Single	Born	(19)	

Double	Born	(34)	

¡  We	checked	every	Feynman	
diagram	by	comparing	analytical	
calculation	with	FeynCalc	

•  SCET	with	
Glauber	gluons,	
hybrid	gauge		

collinear	gluons	



¡  The	medium	splitting	function	is	much	broader	than	the	
vacuum	one.	It	falls	off	less	steeply	in	parts	of	the	tail	region	

¡  Vacuum,	medium	cascade	works	reasonably	well	in	the	tail	
region	in	shape.	Norm	is	off	by	a	factor	of	2.	Along	the	original	
direction	it	does	not	get	the	LPM	cancellation	

¡  In	summing	multiple	emissions	in	the	medium	we	make	
qualitatively	the	same	approximations	as	in	vacuum	



The evolution equations are given by standard Altarelli-Parisi equations:

dD
q

(z,Q)

d lnQ
=

↵
s

(Q2)

⇡

Z

1

z

dz0

z0

n

P
q!qg

(z0, Q)D
q

⇣ z

z0
, Q

⌘

+ P
q!gq

(z0, Q)D
g

⇣ z

z0
, Q

⌘o

, (45)

dD
q̄

(z,Q)

d lnQ
=

↵
s

(Q2)

⇡

Z

1

z

dz0

z0

n

P
q!qg

(z0, Q)D
q̄

⇣ z

z0
, Q

⌘

+ P
q!gq

(z0, Q)D
g

⇣ z

z0
, Q

⌘o

, (46)

dD
g

(z,Q)

d lnQ
=

↵
s

(Q2)

⇡

Z

1

z

dz0

z0

(

P
g!gg

(z0, Q)D
g

⇣ z

z0
, Q

⌘

+P
g!qq̄

(z0, Q)
⇣

D
q

⇣ z

z0
, Q

⌘

+ f
q̄

⇣ z

z0
, Q

⌘⌘

)

. (47)

The complete medium-induced splitting functions look like:

P
(1)

i

(z,Q) = P vac

i

(z) [1 + g
i

(x,Q,L, µ)] , (48)

where the individual terms with all the plus prescriptions and virtual pieces are summarized in
sections 2, 3. These evolution equations have to be solved with initial conditions for parton densities
for quarks, anti-quarks and gluons to equal �(1� z) at some infrared scale ⇠ fewGeV. The resulting
so-called PDF’s at the hard scattering scale Q = p

T

look like f
i/j

(z, p
T

), and have an intuitive
interpretation: probability of the parton i to be found in the parton j at the momentum transfer
scale Q = p

T

. For example f
g/q

(z, p
T

) is the solution for the gluon density from the evolution
equations with the initial conditions f

q

(z, µ
IR

) = �(1� z), f
q̄

(z, µ
IR

) = f
g

(z, µ
IR

) = 0, and so forth.
As a result of solving the A-P evolution equations we get the full LL series resummed by:

�(i)(p
T

) =
X

j=q,q̄,g

Z

1

0

dz �(j)

⇣p
T

z

⌘

f
i/j

(z, p
T

), (49)

where i = q, q̄, g. It is straightforward to check, that by plugging in the lowest order solutions of
the evolution equations, into the equations above, we reproduce Eq. (42), a nice sanity check. In
addition, the equation above when combined properly with the evolution equations contains all the
leading order logarithms resummed. This should be more relevant for the LHC phenomenology where
the energies are higher than RHIC.

TODO: Check if there are additional factors from reversing A-P equations and the
cross section formulas from initial state to the final state.

The soft gluon approximation

The coupled Altarelli-Parisi evolution equations Eq. (45)-Eq. (47) simplify tremendously for x ⌘
1� z ! 0. In this small x approximation the equations decouple and reduce to describe the e↵ect of
leading patrons that shower soft gluons.

To see this we present the small x approximation of medium-induced splitting functions:

P
q!qg

=
2C

F

x
+

+

✓

2C
F

x
g[x,Q,L, µ]

◆

+

, (50)

7

¡  Yield	LLA	or	
MLLA		

	

Z.	Kang	et	al.		(2014)	

In	the	medium:	effective	thermal	
masses,	finite	αs	
	

Implement	medium	–induced	
splittings	as	corrections	to	
vacuum	evolution	
	

Demonstrated	connection	to	E-
loss	

+ q  term
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¡  If	a	connection	is	to	be	found	
between	the	energy	loss	and	the	
evolution	approach,	it	is	in	the	
soft	gluon	limit	

The evolution equations are given by standard Altarelli-Parisi equations:

dD
q

(z,Q)

d lnQ
=

↵
s

(Q2)

⇡

Z

1

z

dz0

z0

n

P
q!qg

(z0, Q)D
q

⇣ z

z0
, Q

⌘

+ P
q!gq

(z0, Q)D
g

⇣ z

z0
, Q

⌘o

, (45)

dD
q̄

(z,Q)

d lnQ
=

↵
s

(Q2)

⇡

Z

1

z

dz0

z0

n

P
q!qg

(z0, Q)D
q̄

⇣ z

z0
, Q

⌘

+ P
q!gq

(z0, Q)D
g

⇣ z

z0
, Q

⌘o

, (46)

dD
g

(z,Q)

d lnQ
=

↵
s

(Q2)

⇡

Z

1

z

dz0

z0

(

P
g!gg

(z0, Q)D
g

⇣ z

z0
, Q

⌘

+P
g!qq̄

(z0, Q)
⇣

D
q

⇣ z

z0
, Q

⌘

+ f
q̄

⇣ z

z0
, Q

⌘⌘

)

. (47)

The complete medium-induced splitting functions look like:

P
(1)

i

(z,Q) = P vac

i

(z) [1 + g
i

(x,Q,L, µ)] , (48)

where the individual terms with all the plus prescriptions and virtual pieces are summarized in
sections 2, 3. These evolution equations have to be solved with initial conditions for parton densities
for quarks, anti-quarks and gluons to equal �(1� z) at some infrared scale ⇠ fewGeV. The resulting
so-called PDF’s at the hard scattering scale Q = p

T

look like f
i/j

(z, p
T

), and have an intuitive
interpretation: probability of the parton i to be found in the parton j at the momentum transfer
scale Q = p

T

. For example f
g/q

(z, p
T

) is the solution for the gluon density from the evolution
equations with the initial conditions f

q

(z, µ
IR

) = �(1� z), f
q̄

(z, µ
IR

) = f
g

(z, µ
IR

) = 0, and so forth.
As a result of solving the A-P evolution equations we get the full LL series resummed by:

�(i)(p
T

) =
X

j=q,q̄,g

Z

1

0

dz �(j)

⇣p
T

z

⌘

f
i/j

(z, p
T

), (49)

where i = q, q̄, g. It is straightforward to check, that by plugging in the lowest order solutions of
the evolution equations, into the equations above, we reproduce Eq. (42), a nice sanity check. In
addition, the equation above when combined properly with the evolution equations contains all the
leading order logarithms resummed. This should be more relevant for the LHC phenomenology where
the energies are higher than RHIC.

TODO: Check if there are additional factors from reversing A-P equations and the
cross section formulas from initial state to the final state.

The soft gluon approximation

The coupled Altarelli-Parisi evolution equations Eq. (45)-Eq. (47) simplify tremendously for x ⌘
1� z ! 0. In this small x approximation the equations decouple and reduce to describe the e↵ect of
leading patrons that shower soft gluons.

To see this we present the small x approximation of medium-induced splitting functions:

P
q!qg

=
2C

F

x
+

+

✓

2C
F

x
g[x,Q,L, µ]

◆

+

, (50)
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P
g!gg

=
2C

A

x
+

+

✓

2C
A

x
g[x,Q,L, µ]

◆

+

, (51)

P
g!qq̄

= 0, (52)

P
q!gq

= 0, (53)

where the function g equals to:

g(x,Q ⌘ k;↵) =

Z

d�z

�
g

(�z)
d2q?

1

�
el

d�medium

el

d2q?

2k? ·q?
(k? � q?)2



1� cos
(k? � q?)2

xp+
0

�z

�

. (54)

From this it is clear that the A-P equations uncouple for di↵erent partons. In the following section
we solve approximately the small-x evolution equations and show connections to the energy loss
approach.

ALTERNATIVE
Flavor conservation is implicit in the small x approximation we focus on momentum conservation

P
q!qg

= 2C
F

⇢

1

x
+

+ �(x) +



1

x
g(x,Q;↵)

�

+

+A(Q;↵)�(x)

�

, (55)

P
g!gg

= 2C
A

⇢

1

x
+

+ �(x) +



1

x
g(x,Q;↵)

�

+

+A(Q;↵)�(x)

�

, (56)

P
g!qq̄

= 0, (57)

P
q!gq

= 0, (58)

where, in terms the function g, we have:

A(Q;↵) =

Z

1

0

dx g(x,Q ⌘ k;↵) ⌘ ⇡2

C
R

↵
s

Z

1

0

dxQ2

dN

dxd2Q
(x,Q;↵) (59)

3.3 From QCD evolution to energy loss

In this section we show that in the soft gluon small-x limit the approximate solution to the decoupled
evolution equations for the fragmentation functions is intimately connected with the energy-loss
approach. In the small x approximation the evolution equation for the fragmentation function looks
like:

dD
h/c

(z,Q)

d lnQ
=

↵
s

⇡

Z

1

z

dz0

z0
⇥

P
c!cg

(z0, Q)
⇤

+

D
h/c

(z/z0, Q). (60)

In the equation above the splitting function P
c!cg

contains both vacuum or medium terms, and is
given by expressions in Eq. (55) and Eq. (56). Let is first focus only on the vacuum contribution
for large z, motivated by the fact that high p

T

hadron production is dominated by large values of z,
especially close to the kinematic limit. Furthermore, since D(z/z0, Q) is a steeply falling function of
z/z0, we expect that the region z0 ⇡ 1 will be the most important:

dD
h/c

(z,Q)

d lnQ
= 2C

R

↵
s

⇡

⇢

Z

1

z

dz0
1

1� z0



1

z0
D

h/c

(z/z0, Q)�D
h/c

(z,Q)

�

+D
h/c

(z,Q) ln(1� z)

�

. (61)
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P
g!gg

=
2C

A

x
+

+

✓

2C
A

x
g[x,Q,L, µ]

◆

+

, (51)

P
g!qq̄

= 0, (52)

P
q!gq

= 0, (53)

where the function g equals to:

g(x,Q ⌘ k;↵) =

Z

d�z

�
g

(�z)
d2q?

1

�
el

d�medium

el

d2q?

2k? ·q?
(k? � q?)2



1� cos
(k? � q?)2

xp+
0

�z

�

. (54)

From this it is clear that the A-P equations uncouple for di↵erent partons. In the following section
we solve approximately the small-x evolution equations and show connections to the energy loss
approach.

ALTERNATIVE
Flavor conservation is implicit in the small x approximation we focus on momentum conservation

P
q!qg

= 2C
F

⇢

1

x
+

+ �(x) +



1

x
g(x,Q;↵)

�

+

+A(Q;↵)�(x)

�

, (55)

P
g!gg

= 2C
A

⇢

1

x
+

+ �(x) +



1

x
g(x,Q;↵)

�

+

+A(Q;↵)�(x)

�

, (56)

P
g!qq̄

= 0, (57)

P
q!gq

= 0, (58)

where, in terms the function g, we have:

A(Q;↵) =

Z

1

0

dx g(x,Q ⌘ k;↵) ⌘ ⇡2

C
R

↵
s

Z

1

0

dxQ2

dN

dxd2Q
(x,Q;↵) (59)

3.3 From QCD evolution to energy loss

In this section we show that in the soft gluon small-x limit the approximate solution to the decoupled
evolution equations for the fragmentation functions is intimately connected with the energy-loss
approach. In the small x approximation the evolution equation for the fragmentation function looks
like:

dD
h/c

(z,Q)

d lnQ
=

↵
s

⇡

Z

1

z

dz0

z0
⇥

P
c!cg

(z0, Q)
⇤

+

D
h/c

(z/z0, Q). (60)

In the equation above the splitting function P
c!cg

contains both vacuum or medium terms, and is
given by expressions in Eq. (55) and Eq. (56). Let is first focus only on the vacuum contribution
for large z, motivated by the fact that high p

T

hadron production is dominated by large values of z,
especially close to the kinematic limit. Furthermore, since D(z/z0, Q) is a steeply falling function of
z/z0, we expect that the region z0 ⇡ 1 will be the most important:

dD
h/c

(z,Q)

d lnQ
= 2C

R

↵
s

⇡

⇢

Z

1

z

dz0
1

1� z0



1

z0
D

h/c

(z/z0, Q)�D
h/c

(z,Q)

�

+D
h/c

(z,Q) ln(1� z)

�

. (61)
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Here, C
R

is the quadratic Casimir in the fundamental or adjoint representation when parton c is a
quark or a gluon, respectively. Expanding the integrand around z0 = 1 we find

dD
h/c

(z,Q)

d lnQ
= 2C

R

↵
s

⇡

⇢

(1� z)

✓

1 + z
@

@z

◆

D
h/c

(z,Q)(z,Q) +D
h/c

(z,Q) ln(1� z)

�

. (62)

Assuming that the steepness of the fragmentation function is approximately independent of Q
✓

1 + z
@

@z

◆

D
h/c

(z,Q) ⇡ [1� n(z)]D
h/c

(z,Q), (63)

we finally find

d lnD
h/c

(z,Q)

d lnQ
= �2C

R

↵
s

⇡
{[n(z)� 1](1� z)� ln(1� z)} . (64)

The equation above can be easily solved exactly

D
h/c

(z,Q) = e
�2CR

↵s
⇡

h

ln

Q
Q0

i

{[n(z)�1](1�z)�ln(1�z)}
D

h/c

(z,Q
0

). (65)

ALTERNATIVE

In the small x approximation the evolution equation for the fragmentation function looks like:

dD
h/c

(z,Q)

d lnQ
=

↵
s

⇡

Z

1

z

dz0

z0
⇥

P
c!cg

(z0, Q)
⇤

D
h/c

(z/z0, Q). (66)

In the equation above the splitting function P
c!cg

contains both vacuum or medium terms, and is
given by expressions in Eq. (55) and Eq. (56). Let is first focus only on the vacuum contribution
for large z, motivated by the fact that high p

T

hadron production is dominated by large values of z,
especially close to the kinematic limit. Furthermore, since D(z/z0, Q) is a steeply falling function of
z/z0, we expect that the region z0 ⇡ 1 will be the most important:

dD
h/c

(z,Q)

d lnQ
= 2C

R

↵
s

⇡

⇢

Z

1

z

dz0
1

1� z0



1

z0
D

h/c

(z/z0, Q)�D
h/c

(z,Q)

�

+D
h/c

(z,Q) [1 + ln(1� z)]
o

. (67)

Here, C
R

is the quadratic Casimir in the fundamental or adjoint representation when parton c is a
quark or a gluon, respectively. Expanding the integrand around z0 = 1 we find

dD
h/c

(z,Q)

d lnQ
= 2C

R

↵
s

⇡

⇢

(1� z)

✓

1 + z
@

@z

◆

D
h/c

(z,Q)(z,Q) +D
h/c

(z,Q) [1 + ln(1� z)]

�

. (68)

Assuming that the steepness of the fragmentation function is approximately independent of Q
✓

1 + z
@

@z

◆

D
h/c

(z,Q) ⇡ [1� n(z)]D
h/c

(z,Q), (69)

we finally find

d lnD
h/c

(z,Q)

d lnQ
= �2C

R

↵
s

⇡
{[n(z)� 1](1� z)� 1� ln(1� z)} . (70)
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Here, C
R

is the quadratic Casimir in the fundamental or adjoint representation when parton c is a
quark or a gluon, respectively. Expanding the integrand around z0 = 1 we find

dD
h/c

(z,Q)

d lnQ
= 2C

R

↵
s

⇡

⇢

(1� z)

✓

1 + z
@

@z

◆

D
h/c

(z,Q)(z,Q) +D
h/c

(z,Q) ln(1� z)

�

. (62)

Assuming that the steepness of the fragmentation function is approximately independent of Q
✓

1 + z
@

@z

◆

D
h/c

(z,Q) ⇡ [1� n(z)]D
h/c

(z,Q), (63)

we finally find

d lnD
h/c

(z,Q)

d lnQ
= �2C

R

↵
s

⇡
{[n(z)� 1](1� z)� ln(1� z)} . (64)

The equation above can be easily solved exactly

D
h/c

(z,Q) = e
�2CR

↵s
⇡

h

ln

Q
Q0

i

{[n(z)�1](1�z)�ln(1�z)}
D

h/c

(z,Q
0

). (65)

ALTERNATIVE

In the small x approximation the evolution equation for the fragmentation function looks like:

dD
h/c

(z,Q)

d lnQ
=

↵
s

⇡

Z

1

z

dz0

z0
⇥

P
c!cg

(z0, Q)
⇤

D
h/c

(z/z0, Q). (66)

In the equation above the splitting function P
c!cg

contains both vacuum or medium terms, and is
given by expressions in Eq. (55) and Eq. (56). Let is first focus only on the vacuum contribution
for large z, motivated by the fact that high p

T

hadron production is dominated by large values of z,
especially close to the kinematic limit. Furthermore, since D(z/z0, Q) is a steeply falling function of
z/z0, we expect that the region z0 ⇡ 1 will be the most important:

dD
h/c

(z,Q)

d lnQ
= 2C

R

↵
s

⇡

⇢

Z

1

z

dz0
1

1� z0



1

z0
D

h/c

(z/z0, Q)�D
h/c

(z,Q)

�

+D
h/c

(z,Q) [1 + ln(1� z)]
o

. (67)

Here, C
R

is the quadratic Casimir in the fundamental or adjoint representation when parton c is a
quark or a gluon, respectively. Expanding the integrand around z0 = 1 we find

dD
h/c

(z,Q)

d lnQ
= 2C

R

↵
s

⇡

⇢

(1� z)

✓

1 + z
@

@z

◆

D
h/c

(z,Q)(z,Q) +D
h/c

(z,Q) [1 + ln(1� z)]

�

. (68)

Assuming that the steepness of the fragmentation function is approximately independent of Q
✓

1 + z
@

@z

◆

D
h/c

(z,Q) ⇡ [1� n(z)]D
h/c

(z,Q), (69)

we finally find

d lnD
h/c

(z,Q)

d lnQ
= �2C

R

↵
s

⇡
{[n(z)� 1](1� z)� 1� ln(1� z)} . (70)
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¡  Using	the	“+”	function,	expanding	around	z’	=	1	and	relating	
derivatives	to	local	slope	we	obtain	the	evolution	to	LLA	

P
g!gg

=
2C

A

x
+

+

✓

2C
A

x
g[x,Q,L, µ]

◆

+

, (51)

P
g!qq̄

= 0, (52)

P
q!gq

= 0, (53)

where the function g equals to:

g(x,Q ⌘ k;↵) =

Z

d�z

�
g

(�z)
d2q?

1

�
el

d�medium

el

d2q?

2k? ·q?
(k? � q?)2



1� cos
(k? � q?)2

xp+
0

�z

�

. (54)

From this it is clear that the A-P equations uncouple for di↵erent partons. In the following section
we solve approximately the small-x evolution equations and show connections to the energy loss
approach.

ALTERNATIVE
Flavor conservation is implicit in the small x approximation we focus on momentum conservation

P
q!qg

= 2C
F

⇢

1

x
+

+ �(x) +



1

x
g(x,Q;↵)

�

+

+A(Q;↵)�(x)

�

, (55)

P
g!gg

= 2C
A

⇢

1

x
+

+ �(x) +



1

x
g(x,Q;↵)

�

+

+A(Q;↵)�(x)

�

, (56)

P
g!qq̄

= 0, (57)

P
q!gq

= 0, (58)

where, in terms the function g, we have:

A(Q;↵) =

Z

1

0

dx g(x,Q ⌘ k;↵) ⌘ ⇡2

C
R

↵
s

Z

1

0

dxQ2

dN

dxd2Q
(x,Q;↵) (59)

3.3 From QCD evolution to energy loss

In this section we show that in the soft gluon small-x limit the approximate solution to the decoupled
evolution equations for the fragmentation functions is intimately connected with the energy-loss
approach. In the small x approximation the evolution equation for the fragmentation function looks
like:

dD
h/c

(z,Q)

d lnQ
=

↵
s

⇡

Z

1

z

dz0

z0
⇥

P
c!cg

(z0, Q)
⇤

+

D
h/c

(z/z0, Q). (60)

In the equation above the splitting function P
c!cg

contains both vacuum or medium terms, and is
given by expressions in Eq. (55) and Eq. (56). Let is first focus only on the vacuum contribution
for large z, motivated by the fact that high p

T

hadron production is dominated by large values of z,
especially close to the kinematic limit. Furthermore, since D(z/z0, Q) is a steeply falling function of
z/z0, we expect that the region z0 ⇡ 1 will be the most important:

dD
h/c

(z,Q)

d lnQ
= 2C

R

↵
s

⇡

⇢

Z

1

z

dz0
1

1� z0



1

z0
D

h/c

(z/z0, Q)�D
h/c

(z,Q)

�

+D
h/c

(z,Q) ln(1� z)

�

. (61)
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The equation above can be easily solved exactly

D
h/c

(z,Q) = e
�2CR

↵s
⇡

h

ln

Q
Q0

i

{[n(z)�1](1�z)�1�ln(1�z)}
D

h/c

(z,Q
0

). (71)

—–
Using the same technique and approximations it is straightforward to generalize to the case

when P
c!cg

(z0, Q) contains both vacuum [· · · ]
vac.

and medium-induced parts. Note that our running
Q ⌘ k?, for example dN/dz0d2Q = dN(z0 ⌘ x,k? ⌘ Q)/dxd2k?. Without writing explicitly the
vacuum evolution part above, we find

dDmed.

h/c

(z,Q)

d lnQ
= [· · · ]

vac.

+
↵
s

⇡

⇢

Z

1

z

dz0
2⇡2

↵
s

Q2

dN

dz0d2Q
(1� z0, Q)



1

z0
Dmed.

h/c

(z/z0, Q)�Dmed.

h/c

(z,Q)

�

�
Z

z

0

dz0
2⇡2

↵
s

Q2

dN

dz0d2Q
(1� z0, Q)Dmed.

h/c

(z,Q)

�

. (72)

Chaging variables z0 ! 1 � z0 in the medium-induced part to make contact with the energy loss
approach, Eq. (77) becomes

d lnDmed.

h/c

(z,Q)

d lnQ
= [· · · ]

vac.

� [n(z)� 1]

⇢

Z

1�z

0

dz0 z0Q
dN

dz0dQ
(z0, Q)

�

�
Z

1

1�z

dz0Q
dN

dz0dQ
(z0, Q) . (73)

Eq. (78) integrates as follows

Dmed.

h/c

(z,Q) = e
�2CR

↵s
⇡

h

ln

Q
Q0

i

{[n(z)�1](1�z)�ln(1�z)}
D

h/c

(z,Q
0

)

⇥e
�[n(z)�1]

n

R 1�z
0 dz

0
z

0 RQ
Q0

dQ

0 dN
dz0dQ0 (z

0
,Q

0
)

o

�
R 1
1�z dz

0 RQ
Q0

dQ

0 dN
dz0dQ0 (z

0
,Q

0
)

= D
h/c

(z,Q)e�[n(z)�1]

˜h�E
E i

z
� ˜hNgiz . (74)

Here, we have chosen Q
0

and Q cover all relevant phase space for medium-induced gluon emission
and defined

˜⌧

�E

E

�

z

=

Z

1�z

0

dz0 z0
Z

Q

Q0

dQ0 dN

dz0dQ0 (z
0, Q0) =

Z

1�z

0

dz0 z0
dN

dz0
(z0) !

z!0

⌧

�E

E

�

, (75)

˜hNgi
z

=

Z

1

1�z

dz0
Z

Q

Q0

dQ0 dN

dz0dQ0 (z
0, Q0) =

Z

1

1�z

dz0
dN

dz0
(z0) !

z!1

hNgi . (76)

Note that it is in opposite limits that Eqs. (75) and (76) reduce to the mean fractional energy loss and
the mean gluon emission number. It should be noted that for final state interactions in the coherent
LPM limit both hNgi and h�E/Ei are dominated by small z gluon emission for very energetic
jets. This, most of the time the modification is primarily driven by the full fractional energy loss.
However, at the kinematic bound the energy loss component vanishes and the suppression is given
by the probability not to radiate gluons, exp(�hN

g

i).
ALTERNATIVE

Using the same technique and approximations it is straightforward to generalize to the case when
P
c!cg

(z0, Q) contains both vacuum [· · · ]
vac.

and medium-induced parts. Note that our running Q ⌘
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The equation above can be easily solved exactly

D
h/c

(z,Q) = e
�2CR

↵s
⇡

h

ln

Q
Q0

i

{[n(z)�1](1�z)�1�ln(1�z)}
D

h/c

(z,Q
0

). (71)

—–
Using the same technique and approximations it is straightforward to generalize to the case

when P
c!cg

(z0, Q) contains both vacuum [· · · ]
vac.

and medium-induced parts. Note that our running
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Chaging variables z0 ! 1 � z0 in the medium-induced part to make contact with the energy loss
approach, Eq. (77) becomes
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Eq. (78) integrates as follows
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Note that it is in opposite limits that Eqs. (75) and (76) reduce to the mean fractional energy loss and
the mean gluon emission number. It should be noted that for final state interactions in the coherent
LPM limit both hNgi and h�E/Ei are dominated by small z gluon emission for very energetic
jets. This, most of the time the modification is primarily driven by the full fractional energy loss.
However, at the kinematic bound the energy loss component vanishes and the suppression is given
by the probability not to radiate gluons, exp(�hN
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¡  Using	the	same	techniques.	The	vacuum	and	the	medium	
induced	evolution	factorize	

¡  The	main	result:	direct	relation	between	the	evolution	and	
energy	loss	approaches	first	established	here		



The	simplest	choice	is:	
	 µ = pT

RAA(pT ) =
H(µ, pT )⌦ f(µ)⌦ f(µ)⌦Dmed(µ)

H(µ, pT )⌦ f(µ)⌦ f(µ)⌦D(µ)

⇤QCD

pT H	

f,	D	

¡  Again	the	soft	gluon	approximation,	but	the	evolution	
approach	

¡  The	goal	is	to	evaluate	the	nuclear	modification	and	the	
related	cross	sections	



Selected	phenomenological	
applications	



¡  Inclusive	charged	hadron	
production	(and		also	π0)	at	
5.02	TeV	in	Pb+Pb		

	

Y.-T.	Chien	et	al.		(2015)	

¡  Different	centralities,	CM	
energies	(QGP	properties)	
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•  Heavy	flavor	still	posed	many	
unresolved	questions	

	

•  High-PT	stable,	low	pT		30-50%	more	
suppression	

•  Does	not	fully	eliminate	the	need	for	
collisional	interactions	/	energy	loss	
or	dissociation	

A.	Andronic	et	al	.	(2015)	
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Y.-T.	Chien	et	al.	(2015)	 ¡  The	jet	definition	allows	to	generalize	
the	concept	of	energy	loss	

0 0.5 1
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R R

θ

θ = R0

θ = R

x, k⊥

k⊥ = p+0 tan θ
2
x(1− x)

p+0

Fractional	energy	loss	outside	of	the	jet	beyond	the	soft	gluon	approximation		

R0	~	O(1)	contains		
the	full	shower	

CMS
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¡  One	can	evaluate	the	jet	energy	
functions	from	the	splitting	functions	

Measurement	operator	–	tells	us	
how	the	above	configurations	
contribute	energy	to	J	(jet	function)	

CMS
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¡  First	quantitative	pQCD/SCET	description	of	jet	shapes	in	HI	



Y.	T.	Chien	et	al	.	(2016)	

•  		Groomed	jet	distribution		using	
“soft	drop”	

rg	=	ΔR12	

	The	great	utility	of	these	new	
distributions:	probe	the	early	
time	dynamics	/	splitting		

pT1	

pT2	

A.	Larkoski	et	al	.	(2014)	

zg	=	

Typical	situation:	E=200	GeV,	rg	=	0.1							
	

Branching	time		<	2	fm	for		zg	studied			

QGP	size	~	10fm	



Calculating	the	soft	dropped	distribution	with	β=0		
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2017	
Jets	and	heavy	
flavor	workshop	

¡  Second	in	a	series	of	
workshops	to	bring	the	NP	
and	HEP	communities	
working	on	jets	and	heavy	
flavor,	with	emphasis	on	
QCD	and	SCET	



	

¡  New	theoretical	developments	are	needed	to	address	the	physics	of	jets	
in	heavy	ion	collisions		

¡  Developed	an	effective	theory	of	jet	propagation	in	matter	with	
complete	set	of	Feynman	rules	in	different	sources	and	gauges.	Gauge	
invariance	of	the	jet	broadening	and	energy	loss	results.	Showed	
factorization	of	the	medium-induced	radiative	corrections	for	the	hard	
scattering,	results	beyond	the	soft	gluon	approximation.	Recent	results	
for	initial-state	and	massive	splitting	kernels			

¡  Phenomenological	application	range	form	light	and	heavy	flavor	
suppression	to	jets	and	jet	substructure	in	heavy	ion	collisions.	Mpre	
reliable	predictions	and	first	successful	description	of	jet	substructure	
observables	in	a	perturbative	approach			

¡  Future:	couple	the	soft	and	Glauber	sector	in	the	background	field	
approach.	Evaluate	and	incorporate	collisional	energy	losses.	Look	at	
improved	phenomenology	that	combines	ln(R)	resummation	with	
medium-induced	showers.	B-jets,	…	

	



	
	

§  Jet	broadening	and	its	
gauge	invariance		

		M.	Gyulassy	et	al.	(2001)	

§  General	result.	Will	evaluate	the	broadening	(or	lack	off)	of	jets	

Classes	of	diagrams	(single	Born,	
double	Born).	Reaction	Operator	

§  In	special	cases	such	as	constant	density	and	the	Gaussian	approximation		

€ 

χ =
L
λ

Starting	with	a	collinear	beam	of	quarks/gluons	

we	recover	 		M.	Gyulassy	et	al.	(2002)	



¡  Explicitly	verified	the	
gauge	invariance	and	
factorization	in	QCD	

2

matter:

LSCETG
(ξn, An, AG) = LSCET(ξn, An) + LG (ξn, An, AG) ,

LG (ξn, An, AG) =
∑

p,p′

e−i(p−p′)x
(

ξ̄n,p′Γµ,a
qqAG

n̄/

2
ξn,p

−iΓµνλ,abc
ggAG

(

Ab
n,p′

)

ν

(

Ac
n,p

)

λ

)

AGµ,a(x) .

(1)

In Ref. [40] the vertexes Γµ,a
qqAG

,Γµνλ,abc
ggAG

have been de-
rived for three types of gauge-fixing conditions: covari-
ant, light-cone and hybrid gauges. In the first case we
gauge-fix both the physical collinear gluons as well as
the Glauber gluons in the covariant gauge. The second
choice corresponds to gauge-fixing both fields using the
light-cone gauge. The third choice, which appears to be
the most convenient from the practical point of view, cor-
responds to a light-cone gauge for collinear gluons and a
covariant gauge for the Glauber gluons. This is a legit-
imate choice from effective theory point of view, since
we are allowed to gauge-fix separate gauge sectors inde-
pendently. Another way of justifying this gauge choice is
factorization between the splitting and the elastic scat-
tering. In this hybrid case both the collinear Wilson line
W and the transverse gauge link T [42–44] vanish. Gauge
invariance of the physics results for the in-medium elas-
tic scattering and radiative energy loss was demonstrated
in [40], providing a cross-check on the approach and the
newly-derived Feynman rules. It is interesting to note
that the same effective theory SCETG is relevant for de-
scribing the Drell-Yan process, as shown in Ref. [45].
We start from amplitudes for the parton splitting pro-

cesses:

Aq→qg = ⟨q(p)g(k)|T eiS χ̄n(x0) |q(p0)⟩ , (2)

Ag→gg = ⟨g(p)g(k)|T eiS Bλc(x0) |g(p0)⟩ , (3)

Ag→qq̄ = ⟨q(p)q̄(k)|T eiS Bλc(x0) |g(p0)⟩ , (4)

Aq→gq = ⟨g(p)q(k)|T eiS χ̄n(x0) |q(p0)⟩ , (5)

where χ,B are collinear gauge invariant SCET fields [46,
47] and the momentum four-vectors, such as p0 = p+ k,
are parametrized in the standard way, consistent with en-
ergy momentum conservation and the on-shell condition
p2 = k2 = 0:

p0 =

[

p+0 ,
k2
⊥

x(1 − x)p+0
,0⊥

]

, (6)

p =

[

(1− x)p+0 ,
k2
⊥

(1− x)p+0
,−k⊥

]

, (7)

k =

[

xp+0 ,
k2
⊥

xp+0
,k⊥

]

. (8)

We use square brackets to indicate the light-cone nota-
tion, which we define for arbitrary four-vector q in the
following way: q ≡ [q+, q−, q⊥] = [n̄·q, n·q, q⊥] and

nµ = (1, 0, 0, 1) , n̄µ = (1, 0, 0,−1). The action in Eq. (2)-
Eq. (5) is given by Lagrangian of SCETG :

S = i

∫

d4xLSCETG
. (9)

Lagrangian of SCETG [36, 40] is given in Eq. (1) and it
evolves the created jet and describes the parton splitting
processes and the interaction of the parton shower in the
medium. The amplitude with qq̄ ↔ q̄q is not shown
explicitly.
Restricting ourselves to the SCET Lagrangian with-

out Glauber gluons, we first verify that at tree level we
recover the Altarelli-Parisi splitting kernels [48], which
have been originally calculated in full QCD:

(

dN

dxd2k⊥

)

q→qg

=
αs

2π2
CF

1 + (1− x)2

x

1

k2
⊥

, (10)

(

dN

dxd2k⊥

)

g→gg

=
αs

2π2
2CA

(1− x

x
+

x

1− x

+x(1− x)
) 1

k2
⊥

, (11)

(

dN

dxd2k⊥

)

g→qq̄

=
αs

2π2
TR

(

x2 + (1 − x)2
) 1

k2
⊥

,(12)

(

dN

dxd2k⊥

)

q→gq

=

(

dN

dxd2k⊥

)

q→qg

(x → 1− x).

(13)

We note that we are interested in real splitting pro-
cesses away from the singular end points x = 0 and
x = 1. In all expressions above the transverse mo-
mentum k⊥ and the lightcone momentum fraction x =
k+/p+0 = k+/(p+ + k+) are for the second final-state
parton. The parent parton has no net transverse momen-
tum and k⊥ = −p⊥. Note that Eq. (10) and Eq. (13)
are interchangeable under x → 1 − x, whereas Eq. (11)
and Eq. (12) are symmetric under this substitution. The
same symmetries hold for the medium-induced splittings
that we derive in section III.
In this paper we use the following terminology: the

double differential distribution dN/dxd2k⊥ we call a
splitting kernel, xdN/dx we call a splitting intensity and
dN/dx we call differential emitted parton number distri-
bution. This terminology applies to both vacuum and
medium-induced splittings. The x−dependent part of
the vacuum splitting kernel we call a splitting function.
Since the medium-induced kernel has a more complicated
k⊥, x correlation structure compared to the simple fac-
torized form in Eq. (10) – Eq. (13) we avoid definition
of a similar term in the medium.

III. MEDIUM-INDUCED PARTON
SPLITTINGS

To describe the collisional and radiative processes
for partons propagating in QCD matter, both single
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ergy momentum conservation and the on-shell condition
p2 = k2 = 0:

p0 =

[

p+0 ,
k2
⊥

x(1 − x)p+0
,0⊥

]

, (6)

p =

[

(1− x)p+0 ,
k2
⊥

(1− x)p+0
,−k⊥

]

, (7)

k =

[

xp+0 ,
k2
⊥

xp+0
,k⊥

]

. (8)

We use square brackets to indicate the light-cone nota-
tion, which we define for arbitrary four-vector q in the
following way: q ≡ [q+, q−, q⊥] = [n̄·q, n·q, q⊥] and

nµ = (1, 0, 0, 1) , n̄µ = (1, 0, 0,−1). The action in Eq. (2)-
Eq. (5) is given by Lagrangian of SCETG :

S = i

∫

d4xLSCETG
. (9)

Lagrangian of SCETG [36, 40] is given in Eq. (1) and it
evolves the created jet and describes the parton splitting
processes and the interaction of the parton shower in the
medium. The amplitude with qq̄ ↔ q̄q is not shown
explicitly.
Restricting ourselves to the SCET Lagrangian with-

out Glauber gluons, we first verify that at tree level we
recover the Altarelli-Parisi splitting kernels [48], which
have been originally calculated in full QCD:

(

dN

dxd2k⊥

)

q→qg

=
αs

2π2
CF

1 + (1− x)2

x

1

k2
⊥

, (10)

(

dN

dxd2k⊥

)

g→gg

=
αs

2π2
2CA

(1− x

x
+

x

1− x

+x(1− x)
) 1

k2
⊥

, (11)

(

dN

dxd2k⊥

)

g→qq̄

=
αs

2π2
TR

(

x2 + (1 − x)2
) 1

k2
⊥

,(12)

(

dN

dxd2k⊥

)

q→gq

=

(

dN

dxd2k⊥

)

q→qg

(x → 1− x).

(13)

We note that we are interested in real splitting pro-
cesses away from the singular end points x = 0 and
x = 1. In all expressions above the transverse mo-
mentum k⊥ and the lightcone momentum fraction x =
k+/p+0 = k+/(p+ + k+) are for the second final-state
parton. The parent parton has no net transverse momen-
tum and k⊥ = −p⊥. Note that Eq. (10) and Eq. (13)
are interchangeable under x → 1 − x, whereas Eq. (11)
and Eq. (12) are symmetric under this substitution. The
same symmetries hold for the medium-induced splittings
that we derive in section III.
In this paper we use the following terminology: the

double differential distribution dN/dxd2k⊥ we call a
splitting kernel, xdN/dx we call a splitting intensity and
dN/dx we call differential emitted parton number distri-
bution. This terminology applies to both vacuum and
medium-induced splittings. The x−dependent part of
the vacuum splitting kernel we call a splitting function.
Since the medium-induced kernel has a more complicated
k⊥, x correlation structure compared to the simple fac-
torized form in Eq. (10) – Eq. (13) we avoid definition
of a similar term in the medium.

III. MEDIUM-INDUCED PARTON
SPLITTINGS

To describe the collisional and radiative processes
for partons propagating in QCD matter, both single
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As far as Dirac structure is concerned of the squared two gluon amplitude in the medium as

we can see from Eq. (3.20) it does not in general give singlet in the Dirac space. This is not the

case in vacuum, since structures ↵
1,j

, ↵
2,j

are real in vacuum, so the ⌃
3

piece cancels in the

vacuum splitting. In the medium, because the longitudinal integrals have a non-zero complex

phase, this piece does not vanish in general, as was also found for a single gluon emission

amplitude in Ref. [2]. However if the jet has been created by a pure QCD interaction, the

trace Tr
⇣

n/

2

JJ̄ ⌃3

⌘

= 0 and the medium induced two gluon emission factorizes from the

production process, similarly to the single gluon emission [2].

4. Angular distributions of splitting functions

In this section we study the angular distributions of the collinear vacuum and medium-induced

splittings. We start from the overview of coherence branching and angular ordering following

closely Ref. [3]. Consider arbitrary hard process with total of n incoming and outgoing quarks

and/or gluons. The exclusive di↵erential cross section of such process we define as �
n

. The

lowest order di↵erential cross section to emit an ultrasoft (eikonal) gluon with momentum

scaling (�2, �2, �2) from either of the external legs we define as �
n+1

. Using well known eikonal

approximation of QCD we find:
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X

i,j

C
ij

W
ij
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where ! is the energy of the emitted gluon, i, j refer to interference term between legs i and

j, C
ij

is a color factor and W
ij

equals to:

W
ij

=
!2 p

i

·p
j

p
i

·q p
j

·q =
1 � cos ✓

ij

(1 � cos ✓
iq

)(1 � cos ✓
jq

)
. (4.2)

For simplicity we have assumed that all external legs are massless, p
i

is the momentum of leg

i, q is the momentum of the emitted gluon and angles between legs i and j and leg i and the

soft gluon are defined as ✓
ij

and ✓
iq

respectively. Function W
ij

has the well known property

of angular ordering, namely if one rewrites:

W
ij

= W
[i]

ij

+ W
[j]

ij

, (4.3)
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Wij	is	the	antenna	function	that		
leads	to	angular	ordering	

soft	gluon	d�n d�n+1

collinear	parton	

•  Comes	from	the	physics	at	the	soft	
scale	

•  At	soft	(long	distance)	scales	the	
emissions	are	angular	ordered	

(k2
⊥ < 0) (k⊥ · p = k⊥ · n = 0) or, equivalently, how the collinear direction is approached.

In the small-k⊥ limit (i.e. neglecting terms that are less singular than 1/k2
⊥), the square of

the matrix element in Eq. (1) fulfils the following factorization formula [1]

|Ma1,a2,...(p1, p2, . . .)|
2 ≃

2

s12
4πµ2ϵαS T ss′

a,...(p, . . .) P̂ ss′

a1a2
(z, k⊥; ϵ) , (7)

where µ is the dimensional-regularization scale. The spin-polarization tensor T ss′

a,...(p, . . .) is
obtained by replacing the partons a1 and a2 on the right-hand side of Eq. (2) with a single
parton denoted by a. This parton carries the quantum numbers of the pair a1 + a2 in the
collinear limit. In other words, its momentum is pµ and its other quantum numbers (flavour,
colour) are obtained according to the following rule: anything + gluon gives anything and
quark + antiquark gives gluon.

The kernel P̂a1a2
in Eq. (7) is the d-dimensional Altarelli–Parisi splitting function [21]. It

depends not only on the momentum fraction z involved in the collinear splitting a → a1+a2,
but also on the transverse momentum k⊥ and on the helicity of the parton a in the matrix
element Mc,...;s,...

a,... (p, . . .). More precisely, P̂a1a2
is in general a matrix acting on the spin

indices s, s′ of the parton a in the spin-polarization tensor T ss′

a,...(p, . . .). Because of these
spin correlations, the spin-average square of the matrix element Mc,...;s,...

a,... (p, . . .) cannot be
simply factorized on the right-hand side of Eq. (7).

The explicit expressions of P̂a1a2
, for the splitting processes

a(p) → a1(zp + k⊥ + O(k2
⊥)) + a2((1 − z)p − k⊥ + O(k2

⊥)) , (8)

depend on the flavour of the partons a1, a2 and are given by

P̂ ss′

qg (z, k⊥; ϵ) = P̂ ss′

q̄g (z, k⊥; ϵ) = δss′ CF

[
1 + z2

1 − z
− ϵ(1 − z)

]

, (9)

P̂ ss′

gq (z, k⊥; ϵ) = P̂ ss′

gq̄ (z, k⊥; ϵ) = δss′ CF

[
1 + (1 − z)2

z
− ϵz

]

, (10)

P̂ µν
qq̄ (z, k⊥; ϵ) = P̂ µν

q̄q (z, k⊥; ϵ) = TR

[

−gµν + 4z(1 − z)
kµ
⊥kν

⊥

k2
⊥

]

, (11)

P̂ µν
gg (z, k⊥; ϵ) = 2CA

[

−gµν
(

z

1 − z
+

1 − z

z

)
− 2(1 − ϵ)z(1 − z)

kµ
⊥kν

⊥

k2
⊥

]

, (12)

where the SU(Nc) QCD colour factors are

CF =
N2

c − 1

2Nc

, CA = Nc , TR =
1

2
, (13)

and the spin indices of the parent parton a have been denoted by s, s′ if a is a fermion and
µ, ν if a is a gluon.

Note that when the parent parton is a fermion (cf. Eqs. (9) and (10)) the splitting
function is proportional to the unity matrix in the spin indices. Thus, in the factorization
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