Ivan Vitev

Jet Quenching in $\operatorname{SCET}_{(\mathrm{G})}$

Advances in QCD and Applications to Hadron Colliders - Argonne National Laboratory, IL, October 2016

Outline of the talk

- Motivation: an overview of leading particle and jet modification measurements. Energy loss theory in the past decade: successes and challenges
- An effective theory for jet propagation in matter SCET_{G}, gauge invariance of jet broadening and energy loss results. Faćtorization of medium-induced radiative corrections. Medium-induced parton showers
- Connection between the full SCET $_{G}$ in-medium evolution and the traditional energy loss approach. Insight from higher $\mathrm{O}\left(\alpha_{s}{ }^{2}\right)$ splitting functions. In-medium DGLAP evolution
- Selected SCET $_{G}$ applications to observables: light hadron cross sections, heavy meson cross sections, jets; jut substructure observables - jet shapes, fragmentation functions and soft dropped distributions

Introduction, motivation

The phase diagram of OCD

Big Bang
$T[\mathrm{MeV}]$
Chandra
X-ray telescope

Color Superconductor
$\langle\psi \bar{\psi} \psi\rangle=0,\langle\psi \psi\rangle \neq 0$
Hadron Gas
$\langle\bar{\psi} \psi\rangle \neq 0,\langle\psi \psi\rangle=0$
0
200

Quark-Gluon Plasma

$$
\langle\bar{\psi} \psi\rangle=0,\langle\psi \psi\rangle=0
$$

Quenching of leading particles

- Jet quenching: suppression of inclusive particle production relative to a binary scaled

 p+p resultM. Gyulassy, et al. (1992)
$\mathrm{R}_{\mathrm{AA}}\left(\mathrm{I}_{\mathrm{AA}} \ldots\right)=\frac{\mathrm{Yield}_{\mathrm{AA}} /\left\langle\mathrm{N}_{\text {binary }}\right\rangle_{\mathrm{AA}}}{\mathrm{Yield}_{\mathrm{pp}}}=\frac{1}{\left\langle\mathrm{~N}_{\text {binary }}\right\rangle_{\mathrm{AuAu}}} \frac{\mathrm{d} \sigma_{\text {AuAu }} / d p_{T} d y}{\mathrm{~d} \sigma_{\mathrm{pp}} / d p_{T} d y}$
Jet quenching in A+A collisions has been regarded as one of the most important discoveries at RHIC

- Tested against alternative suggestions: CGC and hadronic transport models
- Phenomenologically very successful

Final-state interaction origin
Also tested at LHC with W/Z boson cross sections

Jets in heavy ion collisions at the LHC

- Jet quenching: to much higher p_{T}
- Suppression of inclusive jets
- Modified jet substructure

- Advances in jet physics have motivated key detector upgrades at RHIC- sPHENIX. Probe different QGPs, possibly different coupling regimes

Successes and challenges

I.V. et al (2002)

Traditional energy loss approach

$$
I(r)=I_{0} e^{-\int_{0}^{r} d r^{\prime} / \lambda_{a b s}\left(r^{\prime}\right)}=I_{0} e^{-\int_{0}^{r} d r^{\prime} \rho\left(r^{\prime}\right) \sigma\left(r^{\prime}\right)}
$$

	$\tau_{0}[\mathrm{fm}]$	$\tau_{\text {tot }}[\mathrm{fm}]$	$T_{0}[\mathrm{MeV}]$	$\epsilon_{0}\left[\frac{\mathrm{GeV}}{\mathrm{fm}^{3}}\right]$	$\frac{d N^{g}}{d y}$
SPS	0.8	$1.3-2.3$	$205-245$	$1.2-2.6$	$200-350$
RHIC	0.6	$5.5-8$	$360-410$	$12-20$	$800-1200$
LHC	0.2	$13-23$	$710-850$	$170-350$	$2000-3500$

Advantage of R_{AA} : providing useful information for the hot/dense medium within a simple physics picture

- Difficult to make connection to the standard LO, NLO, ...; LL, NLL ... pQCD approach (higher orders and resummation)
- There is considerable model dependence and it is difficult to systematically improve this approach

Soft Collinear Effective Theory with Glaubers

Jet quenching in SCET

- There is no jet quenching in SCET. Still a multiscale problem, but needs extension
C. Baver et al. (2001)

modes	$p^{\mu}=(+,-, \perp)$	p^{2}	fields
collinear	$Q\left(\lambda^{2}, 1, \lambda\right)$	$Q^{2} \lambda^{2}$	ξ_{n}, A_{n}^{μ}
soft	$Q(\lambda, \lambda, \lambda)$	$Q^{2} \lambda^{2}$	q_{s}, A_{s}^{μ}

D. Pirol et al. (2004)

In more detail: the jet scattering kinematics

- What is missing in the SCET Lagrangian is the interaction between the jet and the medium
- Kinematics and channels
t - jet broadening and energy loss
s-isotropisation
u - backward hard scattering

$$
\frac{d \sigma}{d \Omega} \rightarrow \frac{d \sigma}{d^{2} \mathbf{q}_{\perp}}=\frac{C_{2}(R) C_{2}(T)}{d_{A}} \frac{\left|v\left(\mathbf{q}_{\perp} ; E, m_{1}, m_{2}\right)\right|^{2}}{(2 \pi)^{2}}
$$

- Operator formulation / factorization violation, BFKL, etc

The Glauber gluon Lagrangian: background field approach

- Glauber gluons (transverse)

$$
q \sim\left[\lambda^{2}, \lambda^{2}, \lambda\right]
$$

A. Idilbi et al. (2008)

$$
\mathcal{L}_{\mathrm{G}}\left(\xi_{n}, A_{n}, \eta\right)=\sum_{p, p^{\prime}, q} \mathrm{e}^{-i\left(p-p^{\prime}+q\right) x}\left(\bar{\xi}_{n, p^{\prime}} \Gamma_{\mathrm{qq}}^{\mathrm{G}}, \frac{\vec{p}}{2, a} \xi_{n, p}-i \Gamma_{\mathrm{gEA}_{\mathrm{G}}}^{\mu \nu \lambda, a b c}\left(A_{n, p^{\prime}}^{c}\right)_{\lambda}\left(A_{n, p}^{b}\right)_{\nu} \bar{\eta}_{\mathrm{g}}^{\delta, a} \eta \Delta_{\mu \delta}(q)\right.
$$

- Feynman rules for different sources and gauges

Gauge	Object	Collinear source	Static source	Soft source
	$\begin{gathered} p \\ a_{\boldsymbol{p}}, a_{\boldsymbol{p}}^{\dagger} \\ u(p) \\ \bar{u}\left(p_{2}\right) \gamma_{\nu} u\left(p_{1}\right) \\ \hline \end{gathered}$	$\begin{gathered} \hline\left[\lambda^{2}, 1, \boldsymbol{\lambda}\right] \\ \lambda^{-1} \\ 1 \\ {\left[\lambda^{2}, 1, \boldsymbol{\lambda}\right]} \end{gathered}$	$\begin{gathered} \hline[1,1, \boldsymbol{\lambda}] \\ \lambda^{-3 / 2} \\ 1 \\ {[1,1, \boldsymbol{\lambda}]} \end{gathered}$	$\begin{gathered} \hline \hline[\lambda, \lambda, \boldsymbol{\lambda}] \\ \lambda^{-3 / 2} \\ \lambda^{1 / 2} \\ {[\lambda, \lambda, \boldsymbol{\lambda}]} \end{gathered}$
R_{ξ}	$\begin{gathered} \hline \hline A^{\mu}(x) \\ \Gamma_{\mathrm{qq}}{ }^{2} \\ \Gamma_{\mathrm{g} \mathrm{gA}_{\mathrm{G}}} \\ \Gamma_{\mathrm{s}} \end{gathered}$	$\begin{gathered} {\left[\lambda^{4}, \lambda^{2}, \lambda^{3}\right]} \\ \Gamma_{1}^{\mu} \\ \Sigma_{1}^{\mu \nu \lambda} \\ \Gamma_{1}^{\mu}(n \leftrightarrow \bar{n}) \\ \hline \end{gathered}$	$\begin{gathered} \hline \hline\left[\lambda^{2}, \lambda^{2}, \lambda^{3}\right] \\ \Gamma_{1}^{\mu} \\ \Sigma_{1}^{\mu \nu \lambda} \\ \Gamma_{3}^{\mu} \\ \hline \hline \end{gathered}$	$\begin{gathered} {[\lambda, \lambda, \lambda]} \\ \left.\Gamma_{1}^{\mu}\right] \\ \Sigma_{1}^{\mu \nu \lambda} \\ \Gamma_{4}^{\mu} \\ \hline \hline \end{gathered}$
$A^{+}=0$	$\begin{gathered} \hline \hline A^{\mu}(x) \\ \Gamma_{\mathrm{qq}}{ }^{\circ} \\ \Gamma_{\mathrm{g} \mathrm{gA}_{\mathrm{G}}} \\ \Gamma_{\mathrm{s}} \\ \hline \end{gathered}$	$\begin{gathered} \hline\left[0, \lambda^{2}, \lambda^{3}\right] \\ \Gamma_{1}^{\mu} \\ \Sigma_{2}^{\mu \nu \lambda} \\ \Gamma_{2}^{\mu}(n \leftrightarrow \bar{n}) \\ \hline \end{gathered}$	$\begin{gathered} \hline\left[0, \lambda^{2}, \boldsymbol{\lambda}\right] \\ \Gamma_{1}^{\mu}+\Gamma_{2}^{\mu} \\ \Sigma_{2}^{\mu \nu \lambda} \\ \Gamma_{3}^{\mu} \\ \hline \end{gathered}$	$\begin{gathered} \hline[0, \lambda, \mathbf{1}] \\ \Gamma_{1}^{\mu}+\Gamma_{2}^{\mu} \\ \Sigma_{2}^{\mu \nu \lambda} \\ \Gamma_{4}^{\mu} \\ \hline \end{gathered}$
$A^{-}=0$	$\begin{gathered} \hline \hline A^{\mu}(x) \\ \Gamma_{\mathrm{qG} A_{\mathrm{G}}} \\ \Gamma_{\mathrm{gg}} \\ \Gamma_{\mathrm{s}} \\ \hline \end{gathered}$	$\begin{gathered} \hline\left[\lambda^{2}, 0, \boldsymbol{\lambda}\right] \\ \Gamma_{2}^{\mu} \\ \Sigma_{3}^{\mu \nu \lambda} \\ \Gamma_{1}^{\mu}(n \leftrightarrow \bar{n}) \\ \hline \end{gathered}$	$\begin{gathered} \hline\left[\lambda^{2}, 0, \boldsymbol{\lambda}\right] \\ \Gamma_{2}^{\mu} \\ \Sigma_{3}^{\mu \nu \lambda} \\ \Gamma_{3}^{\mu} \\ \hline \end{gathered}$	$\begin{gathered} \hline \hline[\lambda, 0, \mathbf{1}] \\ \Gamma_{2}^{\mu} \\ \Sigma_{3}^{\mu \nu \lambda} \\ \Gamma_{4}^{\mu} \\ \hline \end{gathered}$

$$
\begin{aligned}
& \Gamma_{1}^{\mu, a}=i g T^{a} n^{\mu} \frac{\pi}{2}, \\
& \text { G. Ovanesyan et al. (2011) } \\
& \Gamma_{2}^{\mu, a}=i g T^{a} \frac{\gamma_{\perp}^{\mu} p_{\perp}+p_{\perp}^{\prime \prime} \gamma_{\perp}^{\mu}}{\bar{n} \cdot p} \frac{\vec{n}}{2}, \\
& \Gamma_{3}^{\mu, a}=i g T^{a} v^{\mu}, \\
& \Gamma_{4}^{\mu, a}=i g T^{a} \gamma^{\mu}, \\
& \Sigma_{1}^{\mu \lambda \lambda, a c c}=g f^{a b c} n^{\mu}\left[g^{\mu \lambda} \bar{n} \cdot p+\bar{n}^{\nu}\left(p_{1}^{\prime \lambda}-p_{\perp}^{\lambda}\right)-\bar{n}^{\lambda}\left(p_{1}^{\prime \nu}-p_{\perp}^{\nu}\right)-\frac{1-\frac{1}{\xi}}{2}\left(\bar{n}^{\lambda} p^{\nu}+\bar{n}^{\nu} p^{\lambda}\right)\right] \text {, } \\
& \Sigma_{2}^{\mu \nu \lambda, a b c}=g f^{\text {bcc }}\left[g_{\perp}^{\mu \lambda}\left(-\frac{n^{\nu}}{2} p^{+}+p_{\perp}^{\nu}-2 p_{\perp}^{\prime \nu}\right)+q_{\perp}^{\mu \nu}\left(-\frac{n^{\lambda}}{2} p^{+}+p_{1}^{\lambda}-2 p_{1}^{\lambda}\right)\right. \\
& \left.+g_{\perp}^{\nu \lambda}\left(n^{\mu} \bar{n} \cdot p+p_{\perp}^{\mu}+p_{1}^{\mu}\right)\right], \\
& \Sigma_{3}^{\mu \nu \lambda, d b c}=g f^{\text {bcc }}\left[g_{\perp}^{\mu \lambda}\left(\frac{\bar{n}^{v}}{2}\left(p^{-}-2 p^{\prime}\right)+p_{\perp}^{\nu}-2 p_{1}^{\prime \prime}\right)+g_{\perp}^{\mu \nu}\left(\frac{\bar{n}^{\lambda}}{2}\left(p^{\prime-}-2 p^{-}\right)+p_{\perp}^{\lambda}-2 p_{1}^{\perp}\right)\right. \\
& \left.+g_{\perp}^{\nu \lambda}\left(p_{\perp}^{\mu}+p_{\perp}^{\mu}\right)\right] \text {. }
\end{aligned}
$$

The splitting kernels

- Splitting functions are related to beam (B) and jet (J) functions in SCET
W. Waalewjin. (2014)
$A_{q \rightarrow q g}=\langle J| T \bar{\chi}_{n}\left(x_{0}\right) \mathrm{e}^{i S}|q(\boldsymbol{p}) g(\boldsymbol{k})\rangle$
$A_{g \rightarrow q \bar{q}}=\langle J| T \mathcal{B}^{\lambda c}\left(x_{0}\right) \mathrm{e}^{i S}|q(\boldsymbol{p}) \bar{q}(\boldsymbol{k})\rangle$
$A_{g \rightarrow g g}=\langle J| T \mathcal{B}^{\lambda c}\left(x_{0}\right) \mathrm{e}^{i S}|g(\boldsymbol{p}) g(\boldsymbol{k})\rangle$

$$
\Gamma_{W}^{\alpha, a}(k)=g T_{r}^{a} \frac{\bar{n}^{\alpha}}{k^{+}+i \epsilon}
$$

Gribov et al. (1972)
G. Altarelli et al. (1977)
Y. Dokshitzer (1977)

- In the vacuum we have the DGLAP splitting kernels that factorize from the hard scattering cross section and are process independent

Main results: in-medium splitting / parton energy loss

Diagrams that need to be evaluated to first order in opacity

We have two sectors of the theory different gauges

- Note that a collinear Wilson line appears in the R_{ξ} gauge

$$
\Gamma_{W}^{\alpha, a}(k)=g T_{r}^{a} \frac{\bar{n}^{\alpha}}{k^{+}+i \epsilon}
$$

Classes of diagrams (single Born, double Born). Reaction Operator

Single Born diagrams

Main results: in-medium splitting / parton energy loss

Double Born diagrams

G. Ovanesyan et al. (2011)

- The lightcone gauge

- New Feynman rule

A. Idilbi et al. (2010)

In-medium parton splitting and gauge independence

The soft gluon energy loss imit

- In the soft limit we recover the GLV results
- Only in this limit there is a natural energy loss interpretation (a leading parton loses energy)

$$
\begin{aligned}
& x\left(\frac{d N}{d x d^{2} k_{\perp}}\right)\left\{\begin{array}{l}
q \rightarrow q g \\
g \rightarrow g g \\
q \rightarrow g q \\
g \rightarrow q \bar{q}
\end{array}\right\}=\frac{\alpha_{s}}{\pi^{2}}\left\{\begin{array}{c}
C_{F}[1+\mathcal{O}(x)] \\
C_{[}[1+\mathcal{O}(x)] \\
C_{F}\left[0+\frac{x}{2}+\mathcal{O}\left(x^{2}\right)\right] \\
T_{R}\left[0+\frac{x}{2}+\mathcal{O}\left(x^{2}\right)\right]
\end{array}\right\} \\
& \times \int d \Delta z\left\{\begin{array}{l}
\frac{1}{\lambda_{g}(z)} \\
\frac{\lambda_{g}(z)}{\lambda_{1}(z)} \\
\frac{\lambda_{g_{1}(z)}}{\lambda_{g}(z)}
\end{array}\right\} \int d^{2} \mathbf{q}_{\perp} \frac{1}{\sigma_{e l}} \frac{d \sigma_{e} \frac{\text { medium }}{d^{2} \mathbf{q}_{\perp}}}{\lambda^{2}}
\end{aligned}
$$

But beyond this limit, new way of thinking is required, parton showers, cascades, evolution $\times \frac{2 \boldsymbol{k}_{\perp} \cdot \boldsymbol{q}_{\perp}}{\boldsymbol{k}_{\perp}^{2}\left(\boldsymbol{k}_{\perp}-\boldsymbol{q}_{\perp}\right)^{2}}\left[1-\cos \frac{\left(\boldsymbol{k}_{\perp}-\boldsymbol{q}_{\perp}\right)^{2}}{x p_{0}^{+}} \Delta z\right]$

$$
\mathrm{x} \frac{\mathrm{dP}}{\mathrm{dx}}(\mathrm{q} \rightarrow \mathrm{qg})
$$

Heavy quarks in the vacuum

3 splitting functions (g to gg is the same)

$$
\begin{aligned}
&\left(\frac{d N}{d x d^{2} \boldsymbol{k}_{\perp}}\right)_{Q \rightarrow Q g}=C_{F} \frac{\alpha_{s}}{\pi^{2}} \frac{1}{\boldsymbol{k}_{\perp}^{2}+x^{2} m^{2}}\left[\frac{1-x+x^{2} / 2}{x}-\frac{x(1-x) m^{2}}{\boldsymbol{k}_{\perp}^{2}+x^{2} m^{2}}\right] \\
&\left(\frac{d N}{d x d^{2} \boldsymbol{k}_{\perp}}\right)_{g \rightarrow Q \bar{Q}}=T_{R} \frac{\alpha_{s}}{2 \pi^{2}} \frac{1}{\boldsymbol{k}_{\perp}^{2}+m^{2}}\left[x^{2}+(1-x)^{2}+\frac{2 x(1-x) m^{2}}{\boldsymbol{k}_{\perp}^{2}+m^{2}}\right]
\end{aligned}
$$

The process is not written Q to gQ but it should have been since x goes to 1-x

F. Ringer et al . (2016)

- You see the dead cone effects

Dokshitzer et al . (2001)

- You also see that it depends on the process - it not simply $\mathrm{x}^{2} \mathrm{~m}^{2}$ everywhere: $x^{2} m^{2},(1-x)^{2} m^{2}, m^{2}$

The medium-induced splitting kernels are now derived ($1^{\text {st }}$ order in opacity). More complicated than the vacuum ones. Have been numerically evaluated

Heavy quarks in the medium

Kinematic variables

$$
\left(\frac{d N^{\mathrm{med}}}{d x d^{2} \boldsymbol{k}_{\perp}}\right)_{Q \rightarrow Q g}=\frac{\alpha_{s}}{2 \pi^{2}} C_{F} \int \frac{d \Delta z}{\lambda_{g}(z)} \int d^{2} \boldsymbol{q}_{\perp} \frac{1}{\sigma_{e l}} \frac{d \sigma_{e l}^{\mathrm{med}}}{d^{2} \boldsymbol{q}_{\perp}}\left\{(\frac { 1 + (1 - x) ^ { 2 } } { x }) \left[\frac{\boldsymbol{B}_{\perp}}{\boldsymbol{B}_{\perp}^{2}+\nu^{2}}\right.\right.
$$

$$
\times\left(\frac{\boldsymbol{B}_{\perp}}{\boldsymbol{B}_{\perp}^{2}+\nu^{2}}-\frac{\boldsymbol{C}_{\perp}}{\boldsymbol{C}_{\perp}^{2}+\nu^{2}}\right)\left(1-\cos \left[\left(\Omega_{1}-\Omega_{2}\right) \Delta z\right]\right)+\frac{\boldsymbol{C}_{\perp}}{\boldsymbol{C}_{\perp}^{2}+\nu^{2}} \cdot\left(2 \frac{\boldsymbol{C}_{\perp}}{\boldsymbol{C}_{\perp}^{2}+\nu^{2}}-\frac{\boldsymbol{A}_{\perp}}{\boldsymbol{A}_{\perp}^{2}+\nu^{2}}\right.
$$

- Full massive inmedium

$$
\left.-\frac{\boldsymbol{B}_{\perp}}{\boldsymbol{B}_{\perp}^{2}+\nu^{2}}\right)\left(1-\cos \left[\left(\Omega_{1}-\Omega_{3}\right) \Delta z\right]\right)+\frac{\boldsymbol{B}_{\perp}}{\boldsymbol{B}_{\perp}^{2}+\nu^{2}} \cdot \frac{\boldsymbol{C}_{\perp}}{\boldsymbol{C}_{\perp}^{2}+\nu^{2}}\left(1-\cos \left[\left(\Omega_{2}-\Omega_{3}\right) \Delta z\right]\right)
$$ splitting functions now

$$
+\frac{\boldsymbol{A}_{\perp}}{\boldsymbol{A}_{\perp}^{2}+\nu^{2}} \cdot\left(\frac{\boldsymbol{D}_{\perp}}{\boldsymbol{D}_{\perp}^{2}+\nu^{2}}-\frac{\boldsymbol{A}_{\perp}}{\boldsymbol{A}_{\perp}^{2}+\nu^{2}}\right)\left(1-\cos \left[\Omega_{4} \Delta z\right]\right)-\frac{\boldsymbol{A}_{\perp}}{\boldsymbol{A}_{\perp}^{2}+\nu^{2}} \cdot \frac{\boldsymbol{D}_{\perp}}{\boldsymbol{D}_{\perp}^{2}+\nu^{2}}\left(1-\cos \left[\Omega_{5} \Delta z\right]\right)
$$ available

$$
\left.+\frac{1}{N_{c}^{2}} \frac{\boldsymbol{B}_{\perp}}{\boldsymbol{B}_{\perp}^{2}+\nu^{2}} \cdot\left(\frac{\boldsymbol{A}_{\perp}}{\boldsymbol{A}_{\perp}^{2}+\nu^{2}}-\frac{\boldsymbol{B}_{\perp}}{\boldsymbol{B}_{\perp}^{2}+\nu^{2}}\right)\left(1-\cos \left[\left(\Omega_{1}-\Omega_{2}\right) \Delta z\right]\right)\right]
$$

- Can be

$$
\left.+x^{3} m^{2}\left[\frac{1}{B_{\perp}^{2}+\nu^{2}} \cdot\left(\frac{1}{B_{\perp}^{2}+\nu^{2}}-\frac{1}{C_{\perp}^{2}+\nu^{2}}\right)\left(1-\cos \left[\left(\Omega_{1}-\Omega_{2}\right) \Delta z\right]\right)+\ldots\right]\right\}
$$ evaluated numerically

$$
\begin{aligned}
& \boldsymbol{A}_{\perp}=\boldsymbol{k}_{\perp}, \boldsymbol{B}_{\perp}=\boldsymbol{k}_{\perp}+x \boldsymbol{q}_{\perp}, C_{\perp}=\boldsymbol{k}_{\perp}-(1-x) \boldsymbol{q}_{\perp}, D_{\perp}=\boldsymbol{k}_{\perp}-\boldsymbol{q}_{\perp} \\
& \Omega_{1}-\Omega_{2}=\frac{B_{\perp}^{2}+\nu^{2}}{p_{0}^{+} x(1-x)}, \Omega_{1}-\Omega_{3}=\frac{C_{\perp}^{2}+\nu^{2}}{p_{0}^{+} x(1-x)}, \Omega_{4}=\frac{\boldsymbol{A}_{\perp}^{2}+\nu^{2}}{p_{0}^{+} x(1-x)}, \\
& \nu=m \quad(g \rightarrow Q \bar{Q}), \\
& \nu=x m \quad(Q \rightarrow Q g), \\
& \nu=(1-x) m \quad(Q \rightarrow g Q), \\
& \text { F. Ringer et al . (2016) }
\end{aligned}
$$

Higher order corrections

 and application of cascades

$o\left(\alpha_{s}{ }^{2}\right)$ splitting functions in the vacuum

Splitting

$$
q \rightarrow g g q
$$

$$
\left\langle\hat{P}_{g_{1} g_{2} q_{3}}\right\rangle=C_{F}^{2}\left\langle\hat{P}_{g_{1} 2_{2} q_{3}}^{(a b)}\right\rangle+C_{F} C_{A}\left\langle\hat{P}_{g_{1} g_{2} q_{3}}^{(\mathrm{nab})}\right\rangle
$$

$$
\left\langle P_{g_{1} g_{2} q_{3}}\right\rangle\left(z_{1} \ll z_{2}, z_{3}\right) \quad z_{1}=0.03 \ll z_{2}, z_{3} \quad \text { Splitting function } q \rightarrow g g q
$$

- We use the Feynman rules of SCET, reproduce Catani-Grazzini's result exactly. Only the collinear sector enters
$q \rightarrow \bar{q}^{\prime} q^{\prime} q, q \rightarrow \bar{q} q q, q \rightarrow g g q, g \rightarrow g q \bar{q}, g \rightarrow g g g$
There is always a regular / Abelian contribution.
Neither of the 5 branchings is strictly angular ordered

Feynman graphs for q->qgg in dense QCD matter

- SCET with Glauber gluons, hybrid gauge

collineargluons

Single Born (19)

- We checked every Feynman diagram by comparing analytical calculation with FeynCalc

Numerical results

The medium splitting function is much broader than the vacuum one. It falls off less steeply in parts of the tail region Vacuum, medium cascade works reasonably well in the tail region in shape. Norm is off by a factor of 2. Along the original direction it does not get the LPM cancellation In summing multiple emissions in the medium we make qualitatively the same approximations as in vacuum

Splitting function $q \rightarrow g g q$

Splitting function $q \rightarrow g g q$

Evolution of the fragmentation functions

- Yield LLA or MLLA
$\frac{\mathrm{d} D_{q}(z, Q)}{\mathrm{d} \ln Q}=\frac{\alpha_{s}\left(Q^{2}\right)}{\pi} \int_{z}^{1} \frac{\mathrm{~d} z^{\prime}}{z^{\prime}}\left\{P_{q \rightarrow q g}\left(z^{\prime}, Q\right) D_{q}\left(\frac{z}{z^{\prime}}, Q\right)+P_{q \rightarrow g q}\left(z^{\prime}, Q\right) D_{g}\left(\frac{z}{z^{\prime}}, Q\right)\right\}$,
$\frac{\mathrm{d} D_{\bar{q}}(z, Q)}{\mathrm{d} \ln Q}=\frac{\alpha_{s}\left(Q^{2}\right)}{\pi} \int_{z}^{1} \frac{\mathrm{~d} z^{\prime}}{z^{\prime}}\left\{P_{q \rightarrow q g}\left(z^{\prime}, Q\right) D_{\bar{q}}\left(\frac{z}{z^{\prime}}, Q\right)+P_{q \rightarrow g q}\left(z^{\prime}, Q\right) D_{g}\left(\frac{z}{z^{\prime}}, Q\right)\right\}$,
$\frac{\mathrm{d} D_{g}(z, Q)}{\mathrm{d} \ln Q}=\frac{\alpha_{s}\left(Q^{2}\right)}{\pi} \int_{z}^{1} \frac{\mathrm{~d} z^{\prime}}{z^{\prime}}\left\{P_{g \rightarrow g g}\left(z^{\prime}, Q\right) D_{g}\left(\frac{z}{z^{\prime}}, Q\right)\right.$

In the medium: effective thermal masses, finite α_{s} Implement medium -induced splittings as corrections to vacuum evolution

Demonstrated connection to Eloss

Vacuum evolution in the soft gluon limit

$$
\begin{aligned}
& P_{q \rightarrow q g}=\frac{2 C_{F}}{x_{+}}+\left(\frac{2 C_{F}}{x} g[x, Q, L, \mu]\right)_{+}, \\
& P_{g \rightarrow g g}=\frac{2 C_{A}}{x_{+}}+\left(\frac{2 C_{A}}{x} g[x, Q, L, \mu]\right)_{+}, \\
& P_{g \rightarrow q \bar{q}}=0 \text {, } \\
& \text { - If a connection is to be found } \\
& \text { between the energy loss and the } \\
& \text { evolution approach, it is in the } \\
& \text { soft gluon limit } \\
& P_{q \rightarrow g q}=0, \quad \frac{\mathrm{~d} D_{h / c}(z, Q)}{\mathrm{d} \ln Q}=\frac{\alpha_{s}}{\pi} \int_{z}^{1} \frac{\mathrm{~d} z^{\prime}}{z^{\prime}}\left[P_{c \rightarrow c g}\left(z^{\prime}, Q\right)\right]_{+} D_{h / c}\left(z / z^{\prime}, Q\right) . \\
& \frac{\mathrm{d} D_{h / c}(z, Q)}{\mathrm{d} \ln Q}=2 C_{R} \frac{\alpha_{s}}{\pi}\left\{\int_{z}^{1} \mathrm{~d} z^{\prime} \frac{1}{1-z^{\prime}}\left[\frac{1}{z^{\prime}} D_{h / c}\left(z / z^{\prime}, Q\right)-D_{h / c}(z, Q)\right]+D_{h / c}(z, Q) \ln (1-z)\right\} \\
& \left(1+z \frac{\partial}{\partial z}\right) D_{h / c}(z, Q) \approx[1-n(z)] D_{h / c}(z, Q)
\end{aligned}
$$

- Using the " + " function, expanding around $z^{\prime}=1$ and relating derivatives to local slope we obtain the evolution to LLA

$$
D_{h / c}(z, Q)=\mathrm{e}^{-2 C_{R} \frac{\alpha_{s}}{\pi}\left[\ln \frac{Q}{Q_{0}}\right]\{[n(z)-1](1-z)-\ln (1-z)\}} D_{h / c}\left(z, Q_{0}\right)
$$

Medium-modified evolution of the fragmentation functions

- Using the same techniques. The vacuum and the medium induced evolution factorize

$$
\begin{aligned}
\frac{\mathrm{d} \ln D_{h / c}^{\mathrm{med} .}(z, Q)}{\mathrm{d} \ln Q}= & {[\cdots]_{\text {vac. }}-[n(z)-1]\left\{\int_{0}^{1-z} \mathrm{~d} z^{\prime} z^{\prime} Q \frac{d N}{d z^{\prime} d Q}\left(z^{\prime}, Q\right)\right\}-\int_{1-z}^{1} \mathrm{~d} z^{\prime} Q \frac{d N}{d z^{\prime} d Q}\left(z^{\prime}, Q\right) . } \\
D_{h / c}^{\mathrm{med} .}(z, Q)= & \mathrm{e}^{-2 C_{R} \frac{\alpha}{\pi}\left[\ln \frac{Q}{Q_{0}}\right]\{[n(z)-1](1-z)-\ln (1-z)\}} D_{h / c}\left(z, Q_{0}\right) \\
& \times e^{-[n(z)-1]\left\{\int_{0}^{1-z} \mathrm{~d} z^{\prime} z^{\prime} \int_{Q_{0}}^{Q} d Q^{\prime} \frac{d N}{d z^{\prime} d Q^{\prime}}\left(z^{\prime}, Q^{\prime}\right)\right\}-\int_{1-z}^{1} \mathrm{~d} z^{\prime} \int_{Q_{0}}^{Q} d Q^{\prime} \frac{d N}{d z^{\prime} d Q^{\prime}}\left(z^{\prime}, Q^{\prime}\right)} \\
= & D_{h / c}(z, Q) e^{-[n(z)-1]\left\langle\frac{\Delta \tilde{E}}{E}\right\rangle_{z}-\left\langle\tilde{N N^{g}}\right\rangle_{z}} .
\end{aligned}
$$

- The main result: direct relation between the evolution and energy loss approaches first established here

$$
\begin{aligned}
& \left\langle\frac{\Delta \tilde{E}}{E}\right\rangle_{z}=\int_{0}^{1-z} \mathrm{~d} z^{\prime} z^{\prime} \int_{Q_{0}}^{Q} d Q^{\prime} \frac{d N}{d z^{\prime} d Q^{\prime}}\left(z^{\prime}, Q^{\prime}\right)=\int_{0}^{1-z} \mathrm{~d} z^{\prime} z^{\prime} \frac{d N}{d z^{\prime}}\left(z^{\prime}\right) \quad \rightarrow{ }_{z \rightarrow 0}\left\langle\frac{\Delta E}{E}\right\rangle, \\
& \left\langle\tilde{N^{g}}\right\rangle_{z}=\int_{1-z}^{1} \mathrm{~d} z^{\prime} \int_{Q_{0}}^{Q} d Q^{\prime} \frac{d N}{d z^{\prime} d Q^{\prime}}\left(z^{\prime}, Q^{\prime}\right)=\int_{1-z}^{1} \mathrm{~d} z^{\prime} \frac{d N}{d z^{\prime}}\left(z^{\prime}\right) \quad \rightarrow z \rightarrow 1\left\langle N^{g}\right\rangle \text {. G. Ovanesyan et al. (2014) }
\end{aligned}
$$

Application of the evolution / resummation appraoch

- The goal is to evaluate the nuclear modification and the related cross sections

$$
R_{A A}\left(p_{T}\right)=\frac{H\left(\mu, p_{T}\right) \otimes f(\mu) \otimes f(\mu) \otimes D^{\operatorname{med}}(\mu)}{H\left(\mu, p_{T}\right) \otimes f(\mu) \otimes f(\mu) \otimes D(\mu)}
$$

p_{T}

The simplest choice is:
Λ_{QCD}

$$
\mu=p_{T}
$$

- Again the soft gluon approximation, but the evolution approach

Selected phenomenological applications

Predictions for HIC beyond E-loss

- Different centralities, CM energies (OGP properties)
- Inclusive charged hadron production (and also π°) at 5.02 TeV in $\mathrm{Pb}+\mathrm{Pb}$

Suppression of heavy flavor

- Heavy flavor still posed many unresolved questions
A. Andronic et al . (2015)
- High- P_{T} stable, low $\mathrm{P}_{\mathrm{T}} 30-50 \%$ more suppression
- Does not fully eliminate the need for collisional interactions / energy loss or dissociation

Generalizing the concept of energy loss to jets

Y.-T. Chien et al. (2015)

- The jet definition allows to generalize the concept of energy loss

$$
\begin{aligned}
\epsilon_{q} & =\frac{2}{\omega}\left[\int_{0}^{\frac{1}{2}} d x k^{0}+\int_{\frac{1}{2}}^{1} d x\left(p^{0}-k^{0}\right)\right] \int_{\omega x(1-x) \tan \frac{R}{2}}^{\omega x(1-x) \tan \frac{R_{0}}{2}} d k_{\perp} \frac{1}{2}\left[\mathcal{P}_{q \rightarrow q g}^{\text {med }}\left(x, k_{\perp}\right)+\mathcal{P}_{q \rightarrow g q}^{\text {med }}\left(x, k_{\perp}\right)\right] \\
\epsilon_{g} & =\frac{2}{\omega}\left[\int_{0}^{\frac{1}{2}} d x k^{0}+\int_{\frac{1}{2}}^{1} d x\left(p^{0}-k^{0}\right)\right] \int_{\omega x(1-x) \tan \frac{R}{2} x(1-x)}^{\omega x(1-x) \tan \frac{R_{0}}{2}} d k_{\perp} \frac{1}{2}\left[\mathcal{P}_{g \rightarrow g g}^{\text {med }}\left(x, k_{\perp}\right)+\sum_{q, \bar{q}} \mathcal{P}_{g \rightarrow q \bar{q}}^{\text {med }}\left(x, k_{\perp}\right)\right]
\end{aligned}
$$

Fractional energy loss outside of the jet beyond the soft gluon approximation

Medium-modified jet shapes at NLL

$$
E_{r}\left(x, k_{\perp}\right)=\mathcal{M}_{1}+\mathcal{M}_{2}+\mathcal{M}_{3}+\mathcal{M}_{4}
$$

Measurement operator - tells us how the above configurations contribute energy to J (jet function)

- One can evaluate the jet energy functions from the splitting functions

$$
J_{\omega, E_{r}}(\mu)=J_{\omega, E_{r}}^{v a c}(\mu)+J_{\omega, E_{r}}^{m e d}(\mu) .
$$

- First quantitative pOCD/SCET description of jet shapes in HI

Groomed soft dropped distributions in $\mathrm{SCET}_{\mathrm{G}}$

- Groomed jet distribution using "soft drop"

```
A. Larkoski et al . (2014)
```


QGP size ~ 10fm
$\mathbf{z}_{\mathrm{g}}=\frac{\min \left(p_{T 1}, p_{T 2}\right)}{p_{T 1}+p_{T 2}}>z_{\mathrm{cut}}\left(\frac{\Delta R_{12}}{R_{0}}\right)^{\beta}$

$$
\tau_{\mathrm{br}}[\mathrm{fm}]=\frac{0.197 \mathrm{GeV} \mathrm{fm}}{z_{g}\left(1-z_{g}\right) \omega[\mathrm{GeV}] \tan ^{2}\left(r_{g} / 2\right)}
$$

Typical situation: $\mathrm{E}=200 \mathrm{GeV}, \mathrm{r}_{\mathrm{g}}=0.1$
Branching time <2 fm for Z_{g} studied

```
Y.T. Chien et al . (2016)
```


Accessing the hardest branching in HIC - longitudinal modification

Calculating the soft dropped distribution with $\beta=0$

$p_{i}\left(z_{g}\right)=\frac{\int_{k_{\Delta}}^{k_{R}} d k_{\perp} \overline{\mathcal{P}}_{i}\left(z_{g}, k_{\perp}\right)}{\int_{z_{2} \ldots .}^{1 / 2} d x \int_{k_{\wedge}}^{k_{R}} d k_{\perp} \overline{\mathcal{P}}_{i}\left(x, k_{\perp}\right)}$ $\overline{\mathcal{P}}_{i}\left(x, k_{\perp}\right)=\sum_{j, l}\left[\mathcal{P}_{i \rightarrow j, l}\left(x, k_{\perp}\right)+\mathcal{P}_{i \rightarrow j, l}\left(1-x, k_{\perp}\right)\right]$.
Y.T. Chien et al . (2016)

Generalized to angular distribution of the hard splitting

2017 Jets and heavy flavor workshop

- Second in a series of workshops to bring the NP and HEP communities working on jets and heavy flavor, with emphasis on OCD and SCET

Conclusions

- New theoretical developments are needed to address the physics of jets in heavy ion collisions
- Developed an effective theory of jet propagation in matter with complete set of Feynman rules in different sources and gauges. Gauge invariance of the jet broadening and energy loss results. Showed factorization of the medium-induced radiative corrections for the hard scattering, results beyond the soft gluon approximation. Recent results for initial-state and massive splitting kernels
- Phenomenological application range form light and heavy flavor suppression to jets and jet substructure in heavy ion collisions. Mpre reliable predictions and first successful description of jet substructure observables in a perturbative approach
- Future: couple the soft and Glauber sector in the background field approach. Evaluate and incorporate collisional energy losses. Look at improved phenomenology that combines $\ln (\mathrm{R})$ resummation with medium-induced showers. B-jets, ...

Main results: jet broadening

- Jet broadening and its gauge invariance

M. Gyulassy et al. (2001)

Classes of diagrams (single Born, double Born). Reaction Operator

- General result. Will evaluate the broadening (or lack off) of jets

$$
\frac{d N^{(n)}\left(\mathbf{p}_{\perp}\right)}{d^{2} \mathbf{p}_{\perp}}=\prod_{i=1}^{n} \int_{z_{i-1}}^{L} \frac{d z_{i}}{\lambda} \int d^{2} \mathbf{q}_{\perp i}\left[\frac{1}{\sigma_{e l}\left(z_{i}\right)} \frac{d \sigma_{e l}\left(z_{i}\right)}{d^{2} \mathbf{q}_{\perp i}}\left(e^{-\mathbf{q}_{\perp i} \cdot \vec{\nabla}_{\mathbf{p}_{\perp}}}\right)-\delta^{2}\left(\mathbf{q}_{\perp}\right)\right] \frac{d N^{(0)}\left(\mathbf{p}_{\perp}\right)}{d^{2} \mathbf{p}_{\perp}}
$$

- In special cases such as constant density and the Gaussian approximation

Starting with a collinear beam of quarks/gluons
we recover
M. Gyulassy et al. (2002)

$$
\frac{d N\left(\mathbf{p}_{\perp}\right)}{d^{2} \mathbf{p}_{\perp}}=\frac{1}{2 \pi} \frac{e^{-\frac{p^{2}}{2 \chi \mu^{2} \xi}}}{\chi \mu^{2} \xi} \quad \chi=\frac{L}{\lambda}
$$

Splitting kernel results

- Explicitly verified the gauge invariance and factorization in OCD

$$
\begin{aligned}
\left.\left(\frac{d N}{d x d^{2} \mathbf{k}}\right)^{\prime}\right)_{q \rightarrow q g}= & \frac{\alpha_{s}}{2 \pi^{2}} C_{F} \frac{1+(1-x)^{2}}{x} \frac{1}{\mathbf{k}_{\perp}^{2}},\left(\ldots I_{+}+\boldsymbol{A} \boldsymbol{\delta}(x)\right) \\
\left(\frac{d N}{d x d^{2} \mathbf{k}_{\perp}}\right)_{g \rightarrow g g}= & \frac{\alpha_{s}}{2 \pi^{2}} 2 C_{A}\left(\frac{1-x}{x}+\frac{x}{1-x}\right. \\
& \quad+x(1-x)) \frac{1}{\mathbf{k}_{\perp}^{2}},\left(\ldots I_{+}+B \boldsymbol{\delta}(x)\right)
\end{aligned}
$$

$$
\left(\frac{d N}{d x d^{2} \mathbf{k}_{\perp}}\right)_{g \rightarrow q \bar{q}}=\frac{\alpha_{s}}{2 \pi^{2}} T_{R}\left(x^{2}+(1-x)^{2}\right) \frac{1}{\mathbf{k}_{\perp}^{2}}
$$

$$
\left(\frac{d N}{d x d^{2} \mathbf{k}_{\perp}}\right)_{q \rightarrow g q}=\left(\frac{d N}{d x d^{2} \mathbf{k}}\right)_{q \rightarrow q g}(x \rightarrow 1-x)
$$

- The singular pieces A, B can be obtained form flavor and momentum conservation sum rules

$$
\begin{aligned}
& \int_{0}^{1} P_{q q}(x) \mathrm{d} x=0, \\
& \int_{0}^{1}\left[P_{g q}(x)+P_{q g}(x)\right](1-x) \mathrm{d} x=0, \\
& \int_{0}^{1}\left[2 n_{f} P_{g q}(x)+P_{g g}(x)\right](1-x) \mathrm{d} x=0 .
\end{aligned}
$$

Probing the hardest splitting in jets in heavy ion collisions

Jet substructure modifictaion in HIC well established: jet shapes, jet fragmentation functions

Y.T Chien et al . in progress

Is substructure modification set by late time soft gluon emission?

Or is it manifest in the hard early time splittings?

Bremsstrahlung distributions

$$
\frac{\Delta E^{i n}}{E}\left(R^{\max }, \omega^{\min }\right)=\frac{1}{E} \int_{\omega^{\min }}^{E} d \omega \int_{0}^{R^{\max }} d r \frac{d I^{g}}{d \omega d r}(\omega, r)
$$

The same has to be true for bremsstrahlung from hard scattering

Altarelli-Parisi splitting functions versus corehent branching

collinear parton

$$
\mathrm{d} \sigma_{n} \quad \mathrm{~d} \sigma_{n+1} \quad \text { soft gluon }
$$

$$
\mathrm{d} \sigma_{n+1}=\mathrm{d} \sigma_{n} \frac{\mathrm{~d} \omega}{\omega} \frac{\mathrm{~d} \Omega}{2 \pi} \frac{\alpha_{S}}{2 \pi} \sum_{i, j} C_{i j} W_{i j}
$$

$$
\begin{aligned}
& \left|\mathcal{M}_{a_{1}, a_{2}, \ldots}\left(p_{1}, p_{2}, \ldots\right)\right|^{2} \simeq \\
& \quad \frac{2}{s_{12}} 4 \pi \mu^{2 \epsilon} \alpha_{\mathrm{S}} \mathcal{T}_{a_{1}, \ldots}^{s s^{\prime}}(p, \ldots) \hat{P}_{a_{1} a_{2}}^{s s^{\prime}}\left(z, k_{\perp} ; \epsilon\right)
\end{aligned}
$$

W_{ij} is the antenna function that leads to angular ordering

$$
W_{i j}=\frac{\omega^{2} p_{i} \cdot p_{j}}{p_{i} \cdot q p_{j} \cdot q}=\frac{1-\cos \theta_{i j}}{\left(1-\cos \theta_{i q}\right)\left(1-\cos \theta_{j q}\right)} .
$$

- Comes at the scale of collinear radiation inside the parton shower
- Factorize and are process independent
Coherence branching effects incorporated into splitting functions, HERWIG - a Monte Carlo generator for parton showers
- Comes from the physics at the soft scale
- At soft (long distance) scales the emissions are angular ordered

