Rapidity Renormalization Group and pT Resummation

Hua Xing Zhu

Massachusetts Institute of Technology

Advances in QCD and Applications to Hadron Colliders 26 October, Argonne National Laboratory

> Based on work with Y. Li, D. Neill, M. Schulze, I. Stewart Refs: 1604.00392, 1604.01404, and work in progress

Transverse momentum of color neutral system

Definition of the observable (Drell-Yan case):

$$\vec{q}_{\perp} = \vec{p}_{l^+,\perp} + \vec{p}_{l^-,\perp}$$

ATLAS event: 242090708

$$\frac{d\sigma}{d\vec{q}_{\perp}^2 dY} = \sum_{i,j} \int_0^1 dx_a \, dx_b \, f_{i/h_1}(x_a,\mu_f) f_{j/h_2}(x_b,\mu_f) \frac{d\hat{\sigma}}{d\vec{q}_{\perp}^2 dY}(\hat{s},\hat{t},\hat{u},Q^2)$$

Break down of fixed order P.T. at small pT

+ Fixed order perturbation theory exhibits large logs at small pT

 $\sigma(\vec{b}_{\perp}) \sim \exp\left(A(\alpha_s)\ln^2 \vec{b}_{\perp}^2 + B(\alpha_s)\ln \vec{b}_{\perp}^2\right) + \text{non-singular terms}$

Collins, Soper, Sterman, 1985 ...

pT resummation in Effective theory

 pT resummation in the SCET rapidity RG formalism Jain Neill Rothstein. 2012

$$\frac{d\sigma_{\rm DY}}{dQ^2 dY d^2 \vec{q}_{\perp}} = \sigma_0 \int \frac{d^2 \vec{b}_{\perp}}{(2\pi)^2} e^{i \vec{b}_{\perp} \cdot \vec{q}_{\perp}} H(Q, \mu_h) B_q(x_A, Q, \vec{b}_{\perp}, \mu_b, \nu_b) B_{\bar{q}}(x_B, Q, \vec{b}_{\perp}, \mu_b, \nu_b) S_{\perp}(\vec{b}_{\perp}, \mu_s, \nu_s)$$

$$\cdot \exp\left\{-\int_{b_0^2/\vec{b}_{\perp}^2}^{Q^2} \frac{d\bar{\mu}^2}{\bar{\mu}^2} \left[\left(\Gamma_{\rm cusp} \left[\alpha_s(\bar{\mu})\right] + \frac{d\gamma^r \left[\alpha_s(\bar{\mu})\right]}{d\ln\bar{\mu}^2}\right) \ln \frac{Q^2}{\bar{\mu}^2} + \left(\gamma^V \left[\alpha_s(\bar{\mu})\right] - \gamma^r \left[\alpha_s(\bar{\mu})\right]\right) \right] \right\}$$

Hard function H: quark/gluon form factor +

Beam function B: quark/gluon correlator (unrenormlized) $W_n(x) = P \exp\left(ig \int_{-\infty}^0 ds \,\bar{n} \cdot A(x+s\bar{n})\right)$ +

$$B_{q/N}(z,Q,\vec{b}_{\perp}) = \int dx^{+} e^{izP^{-}x^{+}/2} \left\langle P \left| (\bar{\psi}_{n}W_{n})(x^{+},0,\vec{b}_{\perp}) \frac{\bar{n}_{\mu}\gamma^{\mu}}{2} (W_{n}^{\dagger}\psi_{n})(0) \right| P \right\rangle$$

Soft function S: VEV. of light-like Wilson loop (unrenormalized)

$$S_{\perp} = \frac{\mathrm{Tr}}{C} \langle 0 | T\{S_{\bar{n}}^{\dagger} S_n(0,0,0)\} \overline{T}\{S_n^{\dagger} S_{\bar{n}}(0,0,\vec{b}_{\perp}) | 0 \rangle$$

5
$$S_n(x) = \mathrm{Pexp} \left(ig \int_{-\infty}^0 ds \, n \cdot A(x+sn) \right)$$

Anomalous dimension for resummation

Resummation formulae in the SCET formalism at canonical scale

pT distribution as a precision probe of N.P. QCD

$$\frac{d\sigma_{\mathrm{DY}}}{dQ^{2}dYd^{2}\vec{q}_{\perp}} = \sigma_{0} \int \frac{d^{2}\vec{b}_{\perp}}{(2\pi)^{2}} e^{i\vec{b}_{\perp}\cdot\vec{q}_{\perp}} H(Q,\mu_{h})B_{q}(x_{A},Q,\vec{b}_{\perp},\mu_{b},\nu_{b})B_{\bar{q}}(x_{B},Q,\vec{b}_{\perp},\mu_{b},\nu_{b})S_{\perp}(\vec{b}_{\perp},\mu_{s},\nu_{s})$$

$$\cdot \exp\left\{-\int_{b_{0}^{2}/\vec{b}_{\perp}^{2}}^{Q^{2}} \frac{d\bar{\mu}^{2}}{\bar{\mu}^{2}} \left[\left(\Gamma_{\mathrm{cusp}}\left[\alpha_{s}(\bar{\mu})\right] + \frac{d\gamma^{r}\left[\alpha_{s}(\bar{\mu})\right]}{d\ln\bar{\mu}^{2}}\right)\ln\frac{Q^{2}}{\bar{\mu}^{2}} + \left(\gamma^{V}\left[\alpha_{s}(\bar{\mu})\right] - \gamma^{r}\left[\alpha_{s}(\bar{\mu})\right]\right)\right]\right]$$

$$\cdot e^{-S_{\mathrm{nP}}} \text{ (non-perturbative modification at large impact parameter)}$$

$$\ast \ \mathbf{b}^{*} \ \mathbf{prescription:} \quad b^{*} = \frac{b_{\perp}}{\sqrt{1 + b_{\perp}^{2}/b_{\mathrm{max}}^{2}}}$$

$$\ast \ \mathbf{Commonly used N.P. \ \mathbf{model:} \quad S_{\mathrm{N.P.}} = \exp\left[-\left(g_{1} + g_{2}\ln\frac{Q}{2Q_{0}} + g_{1}g_{3}\ln(100x_{A}x_{B})\right)b_{\perp}^{2}\right]$$

Different functional form for global fit

Landry, Brock, Nadolsky, Yuan, 2002; Konychev, Nadolsky, 2005; Qiu, Zhang, 2001; Echevarria, Idilbi, Schafer, Scimemi, 2011; Sun, Isaacson, Yuan, Yuan, 2014;

. . .

+ Quadratic form at small b

Korchemsky, Sterman, 94; Scimemi, Vladimirov, 16

 $+ g_1 g_3 m(100 x_A x_B)$

- No first principle prediction at large b
 - + quadratic: original CSS parameterization

 $2Q_0$

- + linear: Tafat, 2002
- + constant: Collins, Rogers, 2014
- + Logarithmic: Collins, Soper, 82; SIYY, 2014
- + Need truly non-perturbative prediction. Lattice? integrability?

7

$$\frac{d\sigma_{\rm DY}}{dQ^2 dY d^2 \vec{q}_{\perp}} = \sigma_0 \int \frac{d^2 \vec{b}_{\perp}}{(2\pi)^2} e^{i \vec{b}_{\perp} \cdot \vec{q}_{\perp}} H(Q, \mu_h) B_q(x_A, Q, \vec{b}_{\perp}, \mu_b, \nu_b) B_{\bar{q}}(x_B, Q, \vec{b}_{\perp}, \mu_b, \nu_b) S_{\perp}(\vec{b}_{\perp}, \mu_s, \nu_s)$$

$$\cdot \exp\left\{ -\int_{b_0^2/\vec{b}_{\perp}^2}^{Q^2} \frac{d\bar{\mu}^2}{\bar{\mu}^2} \left[\left(\Gamma_{\rm cusp} \left[\alpha_s(\bar{\mu}) \right] + \frac{d\gamma^r \left[\alpha_s(\bar{\mu}) \right]}{d \ln \bar{\mu}^2} \right) \ln \frac{Q^2}{\bar{\mu}^2} + \left(\gamma^V \left[\alpha_s(\bar{\mu}) \right] - \frac{\gamma^r \left[\alpha_s(\bar{\mu}) \right]}{B \ln \vec{b}_{\perp}^2} \right) \right] \right] B \ln \vec{b}_{\perp}^2$$

$$B = \alpha_s B_1 + \alpha_s^2 B_2 + \cdots$$

$$\gamma_r = \gamma_0^r B_1 + \alpha_s^2 \gamma_1^r + \cdots$$

- Process dependent. Two loops known:
 - + DY: Davies, Stirling, 1984
 - + Higgs: de Florian, Grazzini, 2000

- Obey Casimir scaling to the known perturbative order. Two loops:
 - Gehrmann, Lubbert, L.L.Yang (2012,2014)
 - Echevarria, Scimemi, Vladimirov (2015)
 - + Luebbert, Oredsson, Stahlhofen (2016)

Three-loop knowledge of rapidity anomalous dimension important for reduce perturbative uncertainty, and may shed light on non-perturbative large b behavior

- Hard function (form factor) free from rapidity evolution
- Consistency relation between Beam and soft function

$$\nu \frac{d}{d\nu} \Big[BBS_{\perp} \Big] = 0 \qquad \qquad \mathcal{V} \quad \text{rapidity evolution scale}$$

- Can compute either Beam function or soft function to obtain rapidity anomalous dimension
- The calculation would be simplest using soft function vev. of light-like Wilson loop.
- Problem: light-cone singularity not regularized by dimensional regularization (problem also presented in the beam function)

(un-regulated) Rapidity singularity

$$S_{\perp} = \frac{\mathrm{Tr}}{C} \langle 0 | T\{S_{\bar{n}}^{\dagger} S_n(0,0,0)\} \overline{T}\{S_n^{\dagger} S_{\bar{n}}(0,0,\vec{b}_{\perp}) | 0 \rangle$$

 $S_{n,\bar{n}}$ light-like Wilson line to - ∞

invariant under arbitrary z boost

one-loop example:

 $\sim \int dx_a \, dx_b D_+(x_{ab}^2)$ $\sim \int_0^\infty dt_1 \int_0^\infty dt_2 \, \frac{1}{(t_1 t_2 + \vec{b}_\perp^2)^{1-\epsilon}}$

rapidity divergence In momentum space:

- Several rapidity regulators have been proposed
 - Tilting the Wilson line off light cone: Ji, Ma, Yuan (2004); Collins (2011)
 - analytic regulator: Becher, Neubert (2009); Becher, Bell (2011); two-loop calculation: Gehrmann, Lubbert, Yang (2012,2014)

$$\int d^d k \to \int d^d k \, \left(\frac{\nu}{k^+}\right)^{\alpha}$$

 delta regulator (mass regulator): Echevarria, Idilbi and Scimemi (2011); twoloop calculation: Echevarria, Scimemi, Vladimirov (2015)

$$\frac{1}{k^+ + i\varepsilon} \to \frac{1}{k^+ + \delta}$$

 rapidity renormalization group: Chiu, Jain, Neill, Rothstein (2011,2012); twoloop calculation: Luebbert, Oredsson, Stahlhofen (2016)

$$\int d^d k \to \int d^d k \left(\frac{\nu}{|k_z|}\right)^\eta$$

A new regulator for rapidity divergence 1604.00392, Y. Li, Neill, HXZ

The regulator: an infinitesimal shift to in Euclidean time

- Manifestly preserve gauge symmetry and Non-Abelian exponentiation theorem.
- Logarithmic like singularity log(v). Don't need O(v) terms
- Have operator definition. Possible to put on Lattice

Relation to other soft function: threshold

Light-like Wilson loop separated in Euclidean time only

$$S_{\text{thr.}} = \frac{\text{Tr}}{C} \langle 0 | T\{S_{\bar{n}}^{\dagger}S_{n}(0,0,0)\} \overline{T}\{S_{n}^{\dagger}S_{\bar{n}}(i\tau,i\tau,0)|0\rangle$$
$$\sigma = \tau \int \frac{dx}{x} \frac{dz}{z} f_{1}(x) f_{2}(\tau/x/z) \hat{\sigma}(z)$$
$$\hat{\sigma}(z) \sim \delta(1-z) + \alpha_{s} \left[\frac{\ln(1-z)}{1-z}\right]_{+} + \cdots$$
$$1-z = 1 - \frac{Q^{2}}{\hat{s}} \simeq 2\frac{k_{s}^{0}}{Q} + \cdots$$

 Useful for resummation of large logarithms of (1-z) in partonic cross section of Drell-Yan and Higgs production

> Korchemsky, Marchesini, 1993 Becher, Neubert, Xu, 2007

All three-loop integrals for threshold soft function known

Anastasiou et al, 2015; Y. Li et al, 2014

Building block for Higgs production at N3LO

Anastasiou et al, 2015

Relation to other soft function: fully differential

 Light-like Wilson loop separated both in time and transverse spatial direction Laenen, Sterman, Vogelsang, 2000; Mantry, Petriello, 2009

$$S_{\rm F.D.} = \frac{\mathrm{Tr}}{C} \langle 0 | T\{S_{\bar{n}}^{\dagger} S_n(0,0,0)\} \overline{T}\{S_n^{\dagger} S_{\bar{n}}(i\tau,i\tau,\vec{b}_{\perp}) | 0 \rangle$$

- Fully differential soft function free from rapidity divergence
- Useful for joint resummation
 H.-n Li,98; Laenen, Sterman, Vogelsang, 2000;
 Lustermans, Waalewijn, Zeune, 05
- Non-trivial dependence on dimensionless ratio

$$x = \frac{\vec{b}_{\perp}^2}{(i\tau)^2}$$

✦ Known to two loops Y. Li, Mantry, Petriello, 2011

An almost triangular relations

An almost triangular relations

Fully Differential soft function in N=4 SYM

$$S_{\text{F.D.}} = \exp\left\{\sum_{i=0}^{\infty} \left(\frac{\alpha_s}{4\pi}\right)^{i+1} \left[\frac{\Gamma_i^{\text{cusp}}}{2}L_{\tau}^2 - \gamma_i^s L_{\tau} + c_{i+1}^{\text{F.D.}}(x)\right]\right\} \qquad L_{\tau} = \ln\frac{\tau^2}{b_0^2\mu^2}$$
$$x = \frac{\vec{b}_{\perp}^2}{(i\tau)^2}$$

The µ dependent part fixed by RG equation

$$c_{1}^{\text{F.D.}} = 4N_{c}H_{0,1}(x) + c_{1,\mathcal{N}=4}^{s}$$

$$c_{2}^{\text{F.D.}} = N_{c}^{2} \left[-8\zeta_{2}H_{0,1}(x) - 8H_{0,0,0,1}(x) - 8H_{0,1,0,1}(x) - 16H_{0,0,1,1}(x) - 16H_{0,1,1,1}(x) \right] + c_{2,\mathcal{N}=4}^{s}$$

- Maximal transcendental weight at each order
- HPLs with 0 first entry, 1 last entry. Suggest a simple ansatz on three loops
- Constraint from single logarithmic rapidity divergence at each order

$$x \to -\infty$$

Using threshold soft function as boundary data

Expanding around the zero-impact parameter limit (b=0)

$$\begin{split} S_{\text{F.D.}} &= \frac{\text{Tr}}{C} \langle 0 | T\{S_{\bar{n}}^{\dagger} S_n(0,0,0)\} \overline{T}\{S_n^{\dagger} S_{\bar{n}}(i\tau,i\tau,\vec{b}_{\perp}) | 0 \rangle \\ &= \frac{\text{Tr}}{C} \langle 0 | T\{S_{\bar{n}}^{\dagger} S_n(0,0,0)\} \int d^{d_{\perp}} y_{\perp} \delta^{(d_{\perp})}(y_{\perp}) \sum_{n=0}^{\infty} \frac{1}{n!} \left(b_{\perp}^{\mu} \cdot \frac{\partial}{\partial y_{\perp}^{\mu}} \right)^n \overline{T}\{S_n^{\dagger} S_{\bar{n}}(i\tau,i\tau,\vec{y}_{\perp}) | 0 \rangle \end{split}$$

Implement the expansion in momentum space

$$-i\frac{\partial}{\partial y_{\perp}^{\mu}} \to k_{\perp}^{\mu} = \sum_{i \in \text{on-shell parton}} k_{i,\perp}^{\mu}$$

Rotational invariance in the transverse plane

 $(-i\vec{b}_{\perp}\cdot\vec{k}_{\perp})^{2m} = f(2m)(\vec{b}_{\perp}^2)^m (k^+k^- - k^2)^m; \quad f(2m) = (-1)^m \frac{1\cdot 3\cdot 5\dots(2m-1)}{d_{\perp}\cdot(d_{\perp}+2)\cdot(d_{\perp}+4)\dots(d_{\perp}+2m-2)}$

IBP reduction to known 3-loop integral. Obtain data up to

$$x^{17} = \left(\frac{\vec{b}_{\perp}^2}{(i\tau)^2}\right)^{17}$$

F.D. soft function at three loops in N=4 SYM

Y. Li, HXZ, 1604.01404

$$S_{\text{F.D.}} = \exp\left\{\sum_{i=0}^{\infty} \left(\frac{\alpha_s}{4\pi}\right)^{i+1} \left[\frac{\Gamma_i^{\text{cusp}}}{2}L_{\tau}^2 - \gamma_i^s L_{\tau} + c_{i+1}^{\text{F.D.}}(x)\right]\right\}$$

$$\begin{split} c_{1}^{\text{F.D.}} =& 4N_{c}H_{0,1}(x) + c_{1,\mathcal{N}=4}^{s} & \text{one and two loops} \\ c_{2}^{\text{F.D.}} =& N_{c}^{2} \bigg[-8\zeta_{2}H_{0,1}(x) - 8H_{0,0,0,1}(x) - 8H_{0,1,0,1}(x) - 16H_{0,0,1,1}(x) - 16H_{0,1,1,1}(x) \bigg] + c_{2,\mathcal{N}=4}^{s} \\ & \frac{\text{three-loop scale independent part}}{\varepsilon_{3,\mathcal{N}=4}^{s} + N_{c}^{3} \Big(16\zeta_{2}H_{4} + 48\zeta_{2}H_{2,2} + 64\zeta_{2}H_{3,1} + 96\zeta_{2}H_{2,1,1} + 120\zeta_{4}H_{2} + 48H_{6} + 24H_{2,4} + 40H_{3,3} \\ &+ 72H_{4,2} + 128H_{5,1} + 16H_{2,1,3} + 56H_{2,2,2} + 80H_{2,3,1} + 80H_{3,1,2} + 144H_{3,2,1} + 224H_{4,1,1} \\ &+ 64H_{2,1,1,2} + 96H_{2,1,2,1} + 160H_{2,2,1,1} + 256H_{3,1,1,1} + 192H_{2,1,1,1} \Big) \end{split}$$

Uniform and maximal degree of transcendentality

Anomalous dimension, form factor, momentum space Wilson loop

- Coefficients are integers
- Alternating/uniform sign and each loop order

also see cusp anomalous dimension, Henn, Huber, 2013

QCD = ([N=4]) + (QCD - [N=4])

- N=4 SYM Also "predict" maximal transcendental part of QCD Kotikov, Lipatov, Velizhanin, 2003
- Knowing the maximal transcendental part significantly reduce the undetermined coefficient to be fixed

[N=4 SYM] = 1 gluon + 4 majorana fermion + 3 complex scalar

Directly integrating Nf matter part

 New functions appear in the double cut and triple cut contribution

$$H_1(x) - \frac{H_1(x)}{x} \qquad H_{11}(x) - \frac{H_{11}(x)}{x} \qquad \frac{H_{01}(x)}{x} \qquad \zeta_2 H_1(x) - H_{101}(x)$$

 Cancel in the sum of different cuts. Only one additional term survive in the final result

The QCD results to three loops

Fhree loop

23

An almost triangular relations

Rapidity anomalous dimension @ 3 loop

$$\begin{split} \gamma_0^R &= 0\\ \gamma_1^R &= C_a C_A \left(28\zeta_3 - \frac{808}{27} \right) + \frac{112C_a n_f}{27} \\ \gamma_2^R &= C_a C_A^2 \left(-\frac{176}{3}\zeta_3\zeta_2 + \frac{6392\zeta_2}{81} + \frac{12328\zeta_3}{27} + 44\zeta_4 - 192\zeta_5 - \frac{297029}{729} \right) \\ &+ C_a C_A n_f \left(-\frac{824\zeta_2}{81} - \frac{904\zeta_3}{27} + 8\zeta_4 + \frac{62626}{729} \right) + c\beta_0 \\ &+ C_a n_f^2 \left(-\frac{32\zeta_3}{9} - \frac{1856}{729} \right) + C_a C_F N_f \left(-\frac{304\zeta_3}{9} - 16\zeta_4 + \frac{1711}{27} \right) \end{split}$$

one and two loops known. Direct calculation:

Luebbert, Oredsson, Stahlhofen (2016) also extractable from:

- Davies, Webber, Stirling (1985)
- * Grazzini, de Florian (2000)
- Gehrmann, Lubbert, Yang (2012,2014)
- Echevarria, Scimemi, Vladimirov (2015)

New three loop results!

Intriguing relation between rapidity anomalous dimension and threshold anomalous dimension

Conformal Symmetry and Soft/Rapidity A.D.

A. Validimirov, 1610.05791

Mapping of hard scattering configuration to TMD config.

- Establish $\gamma_s = \gamma_r$ to all orders in P.T. for any CFT
- Obtain γ_r for QCD in critical dimension with beta function vanishing, confirm the result of direct three calculation

$$\beta(g) = g(-\epsilon - a_s\beta_0 - a_s^2\beta_1 - \dots)$$

Small pT cross section for Higgs production

 There are many different ways to perform pT resummation for Higgs production. We follow Neill, Rothstein, Vaidya (2015)

$$\frac{\mathrm{d}^{2}\sigma}{\mathrm{d}^{2}\vec{Q}_{T}} = \int x_{a} \int x_{b} \,\delta\Big(x_{a}x_{b} - \frac{m_{H}^{2}}{S}\Big)\sigma_{0} \int \frac{\mathrm{d}^{2}\vec{b}}{(2\pi)^{2}} e^{i\vec{b}\cdot\vec{Q}_{T}} W\big(x_{a}, x_{b}, m_{H}, \vec{b}, \mu, \nu\big) + \frac{\mathrm{d}^{2}\sigma}{\mathrm{d}^{2}\vec{Q}_{T}}\Big|_{\mathrm{n.s.}}$$
$$W(x_{a}, x_{b}, m_{H}, \vec{b}, \mu, \nu) = \Big|C_{V}\Big(m_{t}, m_{H}, \mu\Big)\Big|^{2} S(\vec{b}, \mu, \nu) B_{g/N_{1}}^{\alpha\beta}(x_{a}, Q, \vec{b}, \mu, \nu) B_{g/N_{2}}^{\alpha\beta}(x_{b}, Q, \vec{b}, \mu, \nu)$$

$$\begin{split} C_{V}(m_{t},m_{H},\mu) &= C_{V}(m_{t},m_{H},\mu_{H}) \exp\left[\frac{1}{2}\int_{\mu_{H}^{2}}^{\mu^{2}} \frac{d\bar{\mu}^{2}}{\bar{\mu}^{2}} \left(\Gamma_{\mathrm{cusp}}\left[\alpha_{s}(\bar{\mu})\right] \ln \frac{M_{H}^{2}}{\bar{\mu}^{2}} + \gamma^{V}\left[\alpha_{s}(\bar{\mu})\right]\right)\right] \\ B_{g/N}^{\alpha\beta}(x,\vec{b},Q,\mu,\nu) &= \left[\frac{g_{\perp}^{\alpha\beta}}{d-2}B_{g/N}(x,b,Q,\mu,\nu) + \left(\frac{g_{\perp}^{\alpha\beta}}{d-2} + \frac{b^{\alpha}b^{\beta}}{b^{2}}\right)B_{g/N}'(x,b,Q,\mu,\nu)\right] \\ B_{g/N}(x,b,Q,\mu,\nu) &= \sum_{j}\int_{x}^{1}\frac{\mathrm{d}z}{z}I_{gj}(z,b,Q,\mu,\nu)f_{j/N}(x/z,\mu) + \dots \\ S_{\perp}(b,\mu,\nu) &= S_{\perp}(b,\mu_{s},\nu_{s})\exp\left[\int_{\mu_{s}^{2}}^{\mu^{2}}\frac{d\bar{\mu}^{2}}{\bar{\mu}^{2}}\left(\Gamma_{\mathrm{cusp}}[\alpha_{s}(\bar{\mu})]\ln\frac{b^{2}\bar{\mu}^{2}}{b_{0}^{2}} + \gamma^{s}[\alpha_{s}(\bar{\mu})]\right) \\ &\quad + \ln\frac{\nu^{2}}{\nu_{s}^{2}}\left(-\int_{b_{0}^{\mu^{2}}}^{\mu^{2}}\frac{d\bar{\mu}^{2}}{\bar{\mu}^{2}}\Gamma_{\mathrm{cusp}}[\alpha_{s}(\bar{\mu})] + \gamma^{r}[\alpha_{s}(b_{0}/b)]\right) \end{split}$$

pT resummation for Higgs production at N3LL

Y. Li, Neill, Schulze, Stewart, HXZ, work in progress

- Perturbative order of various ingredients:
 - Two-loop hard function, beam function, soft function
 - Three-loop normal anomalous dimension
 - * Three-loop splitting amplitude
 - Three-loop rapidity anomalous dimension (new)
 - * Four-loop cusp anomalous dimension (Pade approximation)
- Resummation performed in b space
- Simple b* scheme for non-perturbative effects

$$b^* = \frac{b}{\sqrt{1+b^2/b_{\max}^2}}$$

* Light quark mass effects included at fixed order

Scale setting in the resumed regime

- * Three independent scale variation:
 - hard μ scale, beam and soft μ scale, soft v (rapidity) scale

 $\sigma \sim \sigma_0 H(f \otimes C) \otimes (f \otimes C) e^{-S_g(b,Q)}$

Large Sudakov suppression at large b. Small N.P. effects.
 See also [Berger, Qiu, 2002]

Quark mass effects and perturbative power corrections

Hard scale variation

soft/beam renormalization scale variation

rapidity scale variation

Non-Perturbative uncertainties

Total scale uncertainties

Conclusion

- Introduce a new regulator for rapidity divergence in SCET description of transverse-momentum distribution.
- Analytic calculation of the resulting three-loop soft function through threeloops for the first time, extracting the rapidity anomalous dimension (also known as collinear anomaly d2)
 - Lifting the rapidity regulator as an dynamical variable: double differential soft function
 - Compute the double differential soft function (the N=4 part) by making an ansatz, and then fixing the coefficient using expansion around b=0. Two different method for the remaining QCD part.
 - Intriguing relation between rapidity anomalous dimension and soft anomalous dimension.

N3LL pT resummation for Higgs production (except for four-loop cusp)

 Significant reduction of uncertainties. About 10% total uncertainties in the resumed region.