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Near Forward scattering has been a significant challenge 
since the advent of modern QFT. The calculation of forward 
scattering cross section still lacks theoretical underpinning. 
Furthermore, even if there is a hard scattering interaction 
forward scattering sub-processes can reduce predictive 

power.

S-Matrix theory, String Theory, AdS/CFT have shed much light on the problem but it is 
perhaps true that there is still no systematic, first principles, QFT approach to the 

problem.
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FIG. 33. Spectator-specator interactions for the hard scattering correlator in Eq. (329). The Glauber

interaction labeled G indicates the sum of all ladder diagrams including the graph with 0 Glaubers as

indicated.

We will also show under what circumstances the phase cancels. Of course this cancellation

is a necessary TODO:

Check

(TODO) but not su�cient condition for a proof of factorization. Since there are

quantum corrections which break factorization that are not pure phases. A demonstration of how

complete proofs of factorization can be carried out using our Glauber theory will be given elsewhere.

TODO:

FIX THIS

OUTLINE

(TODO) In Sec. XIB we consider the same all order resummation of Glauber exchanges for

a hard scattering vertex, demonstrating that they again give a phase. In Sec. XIA we consider

Glauber gluons in diagrams involving spectators that do not directly participate in the hard scat-

tering.

A. Spectator-Spectator

We begin by considering the diagrams in Fig. 33 which we refer to as Spectator-Spectator (SS)

interactions. These occur between spectator particles which do not participate in the hard annihi-

lation. Since the hard scattering case with MDIS
� has only a single hadron, these SS contributions

only exist for the hard annihilation case with MDY
� , where the two participating spectators are

created by �n and �n̄ respectively. In these graphs the hard interaction is indicated by the ⌦, and

our routing for incoming and outgoing external momentum is shown in Fig. 33b. For simplicity

we take the limit where the mass of the incoming hadrons is ignored, so that P 2 = P̄ 2 = 0. This

is accomplished by taking Pµ = n̄ · P nµ/2 and P̄ = n · P̄ n̄µ/2 respectively. The tree level result

for Fig. 33b is then given by

Fig. 33b = S� i n̄ · (p1�P )

(P � p1)2
i n · (P̄ � p2)

(P̄ � p2)2
(330)

= S�



1

~p 2
1?

1

~p 2
2?

� 

n̄ · p1 n̄ · (P�p1)

n̄ · P
n · p2 n · (P̄�p2)

n · P̄
�

⌘ S� E(p1?, p2?),

where we have defined the spinor factor for the outgoing quark-antiquark as

S� = ūn�
µ
?v

⇤
n̄ . (331)



• B physics (inclusives as well as exclusives) 

• Hard Scattering factorization theorems and 
resummations. 

• Jet Physics 

• Fermi Liquid Theory

EFT approach, SCET, has been shown to be  
remarkably powerful tool

However, almost all papers written on the subject 
have not addressed the issue of the problem of 

forward scattering. 
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The initial state of the incoming nucleus is defined as |A; p⟩. The general final hadronic or partonic state is defined
as |X⟩. As a result, the semi-inclusive hadronic tensor may be defined as

Wµν=
∑

X

(2π4)δ4(q+PA−pX)⟨A; p|Jµ(0)|X⟩⟨X |Jν(0)|A; p⟩ = 2Im

[
∫

d4yeiq·y⟨A; p|Jµ(y)Jν(0)|A; p⟩
]

, (32)

where the sum (
∑

X) runs over all possible hadronic states and Jµ is the hadronic electromagnetic current i.e.,
Jµ = Qq ξ̄n̄γµξn, where Qq is the charge of a quark of flavor q in units of the positron charge e. It is understood
that the factors of the electromagnetic coupling constant have already been extracted and included in Eq. (30). The
leptonic tensor will not be discussed further. The focus in the remaining shall lie exclusively on the hadronic tensor.

In a full QCD calculation of Eq. (32), one computes the hadronic tensor, order by order, in the strong coupling.
This leads to the introduction of a variety of processes leading to a modification of the structure of the jet. Such
processes include radiative branchings, flavor changes of propagating partons, as well as transverse diffusion of the
partons in the shower which ensues from the quark produced in the hard scattering. In this article, we will focus
solely on the processes which lead to the transverse momentum diffusion or transverse broadening of the produced
hard quark.

In Ref. [30], the leading contributions to transverse broadening without induced radiation, at all orders in coupling,
were identified as those of Fig. 5. These diagrams depict processes where the propagating parton engenders multiple
scattering off the glue field inside the various nucleons through which it propagates. However, scatterings do not
change the small off-shellness of the propagating parton; as a result, large transverse momentum radiations do not
occur. Using simple kinematics, the relation between the momentum components of the glue field ki may be surmised
by insisting that the off-shellness of the i + 1th quark line be of the same order as the ith line,

(p + ki)
2 = p2 + k2

i + 2p+k−
i + 2p−k+

i − 2p⃗⊥ · k⃗i
⊥. (33)

Insisting that (p+ki)2 ∼ p2 ∼ λ2Q2 and given the known scaling of the quark momenta (i.e., p+ ∼ λ2Q, p− ∼ Q, p⃗⊥ ∼
λQ), we obtain that k⃗i

⊥ ∼ λQ, k+
i ∼ λ2Q and k−

i may scale with a range of different choices Q, λQ, λ2Q etc. The first
two cases for the scaling of k− represent gluons which are emanated with large (−)-momentum from a nucleon moving
with large (+)-momentum. The number of such gluons must be vanishingly small. The first non-trivial population of
gluons emanating from a nucleon moving with a large (+)-momentum, are those which scale as k ∼ [λ2, λ2, λ], which
essentially constitute the Glauber sector.
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FIG. 5: An order n diagram which contributes solely to transverse broadening.

Using the Feynman rules derived for Glauber gluons in section 2, the leading component of nth order diagrams such
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If there were no hard interaction then 
Glauber is responsible for forward scattering, 

so Glaubers must form a phase in hard 
collisions
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• Abelian Eikonal Phase

(Work in progress with I. 
Stewart)
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• Abelian Eikonal Phase

(Work in progress with I. 
Stewart)However, there exists another mode in the theory, for which symmetry 

plays no role, that arise for exceptional external momentum 
configurations (near forward)

Shows up at 
leading power



The Glauber gluon contributes at leading order in near forward 
 scattering and builds up  a coherent shock wave solution. 
Leading order Glauber contributions threaten factorization. 

 Primary challenge to factorization theorems

To prove factorization must either show that they're 
contributions are subsumed by other modes which 

factorize, or if not, that they cancel in the 
observable of interest.
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Glauber Exchange 
violates factorization: 122
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FIG. 29. Spectator-specator interactions for the hard scattering correlator in Eq. (312). The Glauber

interaction labeled G indicates the sum of all ladder diagrams including the graph with 0 Glaubers as

indicated.

As we will see below once the hard scattering is taken into account the Glaubers no longer

eikonalize. However, despite this fact, an overall phase will still be generated if we sum over

Glauber exchange rungs (ignoring soft and collinear radiation).

We will also show under what circumstances the phase cancels. Of course this cancellation

is a necessary TODO:

Check

(TODO) but not su�cient condition for a proof of factorization. Since there are

quantum corrections which break factorization that are not pure phases. A demonstration of how

complete proofs of factorization can be carried out using our Glauber theory will be given elsewhere.

TODO:

FIX THIS

OUTLINE

(TODO) In Sec. VIIB we consider the same all order resummation of Glauber exchanges for

a hard scattering vertex, demonstrating that they again give a phase. In Sec. VIIA we consider

Glauber gluons in diagrams involving spectators that do not directly participate in the hard scat-

tering.

A. Spectator-Spectator

We begin by considering the diagrams in Fig. 29 which we refer to as Spectator-Spectator (SS)

interactions. These occur between spectator particles which do not participate in the hard annihi-

lation. Since the hard scattering case with MDIS
� has only a single hadron, these SS contributions

only exist for the hard annihilation case with MDY
� , where the two participating spectators are

created by �n and �n̄ respectively. In these graphs the hard interaction is indicated by the ⌦, and

our routing for incoming and outgoing external momentum is shown in Fig. 29b. For simplicity

we take the limit where the mass of the incoming hadrons is ignored, so that P 2 = P̄ 2 = 0. This

is accomplished by taking Pµ = n̄ · P nµ/2 and P̄ = n · P̄ n̄µ/2 respectively. The tree level result

for Fig. 29b is then given by

Fig. 29b = S� i n̄ · (p1�P )

(P � p1)2
i n · (P̄ � p2)

(P̄ � p2)2
(313)

= S�
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couples n-collinear,
n-collinear, and 

soft modes

Glauber’s dominate 
Forward Scattering:
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FIG. 4. Tree level matching for the nnn̄n̄ Glauber operators. In a) we show the four full QCD graphs

with t-channel singularites. The matching results are given by reading down each column. In b) we show

the corresponding Glauber operators for the four operators in SCET with two equivalent notations. The

notation with the dotted line in c) emphasizes the factorized nature of the n and n̄ sectors in the SCET

Glauber operators, which have a 1/P2
? between them denoted by the dashed line.

Thus for these tree level 2–2 scattering graphs the Mandelstam invariant t = q2? = �~q 2
? < 0.

For this matching calculation there are four relevant QCD tree graphs, shown in Fig. 4a. They

will result in four di↵erent Glauber operators, whose Feynman diagrams for this matching are

represented by Fig. 4c. The matching must be carried out using S-matrix elements for a physical

scattering process, so we take ?-polarization for the external gluon fields. Expanding in � the

results for the top row of diagrams at leading order is

i
h

ūn
n̄/

2
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ih�8⇡↵s(µ)�BC

~q 2
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h

ūn
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ih�8⇡↵s(µ)�BC

~q 2
?

ih

ifCA4A1gµ1µ4
? n · p1

i

,

i
h

ifBA3A2gµ2µ3
? n̄ · p2

ih�8⇡↵s(µ)�BC

~q 2
?

ih

ifCA4A1gµ1µ4
? n · p1

i

.

In writting these results we have written out the collinear quark spinors but left o↵ the collinear

gluon polarization vectors "µ2A2
n (p2) etc, for simplicity.

We begin our analysis by discussing the SCETII operators whose tree level matrix elements

reproduce the results in Eq. (28). The four SCETII operators whose matrix elements reproduce

Eq. (28) factorize into collinear and soft operators separated by 1/P2
? factors, so we adopt the

n n

ss

fwd. scattering

fwd. scattering

n-n̄

n-s

(small-x logs,  reggeization, BFKL,
BK/BJMWLK, …)

Instantaneous analogous to 
Coulomb exchange
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Construction: �� 1 large Q

will do calculations with back-to-back collinear particles for simplicity

Integrate out
Need 3-types of Glauber momenta:

mode fields pµ momentum scaling physical objects type
n-collinear �n, Aµ

n (n · p, n̄ · p, p�) � Q(�2, 1,�) n-collinear “jet” onshell
n̄-collinear �n̄, Aµ

n̄ (n̄ · p, n · p, p�) � Q(�2, 1,�) n̄-collinear “jet” onshell
soft �S, Aµ

S pµ � Q(�, �, �) soft virtual/real radiation onshell
ultrasoft �us, Aµ

us pµ � Q(�2,�2,�2) ultrasoft virtual/real radiation onshell
Glauber – pµ � Q(�a,�b,�), a + b > 2 forward scattering potential o�shell

(here {a, b} = {2, 2}, {2, 1}, {1, 2})
hard – p2 � Q2 hard scattering o�shell
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reproduce the results in Eq. (28). The four SCETII operators whose matrix elements reproduce

Eq. (28) factorize into collinear and soft operators separated by 1/P2
? factors, so we adopt the

fwd. scattering
n-n̄

n n

ssfwd. scattering
n-s

fwd. scattering
n̄-s n n

ss

1
k2
�

potentials

instantaneous in x+, x� (t and z)

•

•



Goal: Write down an EFT which incorporates Glauber 
interactions into high energy scattering that will allow for a 

general analysis on their effects on observables 
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1) Generalize/Simplify factorization proofs. 
2) Determine when and at what level 

Glaubers contribute 
3) Calculate systematically when Glaubers 

do indeed contribute. 
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Construction: �� 1 large Q

n n

ss

fwd. scattering n-s

mode fields pµ momentum scaling physical objects type
n-collinear �n, Aµ

n (n · p, n̄ · p, p�) � Q(�2, 1,�) n-collinear “jet” onshell
n̄-collinear �n̄, Aµ

n̄ (n̄ · p, n̄ · p, p�) � Q(�2, 1,�) n̄-collinear “jet” onshell
soft �S, Aµ

S pµ � Q(�, �, �) soft virtual/real radiation onshell
ultrasoft �us, Aµ

us pµ � Q(�2,�2,�2) ultrasoft virtual/real radiation onshell
Glauber – pµ � Q(�a,�b,�), a + b > 2 forward scattering potential o�shell

(here {a, b} = {2, 2}, {2, 1}, {1, 2})
hard – p2 � Q2 hard scattering o�shell

n n

ss

n n

ss

n n

ss
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which now involve the n̄-collinear bilinear operators in Eq. (31), and the soft operators

Oqn̄B
s = 8⇡↵s

⇣

 ̄n̄
S TB n̄/

2
 n̄
S

⌘

,

Ogn̄B
s = 8⇡↵s

⇣ i

2
fBCDBn̄C

S?µ

n̄

2
· (P+P†)Bn̄Dµ

S?
⌘

, (40)

where the fields  n̄
s and Bn̄Dµ

S? can be found in Eqs. (13) and (17). Once again with our conventions

these operators have tree level Wilson coe�cients equal to 1. The lowest order Feynman rules for

n̄-s forward scattering from the operators in Eq. (39) are given by those in Fig. 9 with n $ n̄.

Considering all terms which cause scattering between either colllinear or soft fields we can write

the full Glauber Lagrangian for SCETII as

LII(0)
G = e�ix·P X

n,n̄

X

i,j=q,g

Oij
nsn̄ + e�ix·P X

n

X

i,j=q,g

Oij
ns

⌘ e�ix·P X

n,n̄

X

i,j=q,g

OiB
n

1

P2
?
OBC

s

1

P2
?
OjC

n̄ + e�ix·P X

n

X

i,j=q,g

OiB
n

1

P2
?
OjnB

s . (41)

Thus we see that the Glauber Lagrangian consists of operators connecting 3 rapidity sectors

{n, s, n̄} and operators connecting 2 rapidity sectors {n, s} (and {n̄, s}). In SCETI these Glauber

operators are the same as in SCETII, so

LI(0)
G = LII(0)

G . (42)

However due to the appearance of ultrasoft fields, and the di↵erences between how momentum

sectors are separated the precise behavior of these operators in loop diagrams will in general be

di↵erent. We will see this explicitly in our one-loop matching calculations in Secs. IVA and IVC.

3. Matching for All Polarizations

For completeness, we can also repeat the matching calculations involving external gluons with

arbitrary external polarizations. This amounts to not specifying a specific basis for the physical

states, and allows us to see how the scattering with non-transverse polarizations are matched by

the EFT. To carry out this calculation it is important to use the equations of motion to simplify

the gluon matrix elements. For a full theory scattered gluon of momentum p the equations of

motion imply p2 = 0 as well as

0 = pµAµ(p) =
1

2
n̄ · p n·A(p) +

1

2
n · p n̄·A(p) + p? ·A?(p) . (43)

As an explicit example we consider the two-gluon two-quark matching calculation given by the

diagrams shown in Fig. 10. Since the Glauber operator Ogq
n̄s obviously only yields n̄ · A and A?

polarizations, we use Eq. (43) to eliminate the n·A polarization terms in the full theory amplitude.
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FIG. 9. Lowest order Feynman rules for the Glauber operators Oij
ns for n-s forward scattering. Results for

Oij
n̄s are analogous with n $ n̄.

adjoint indices in Eq. (34), and the 1/P2
? gives the central terms in square brackets in Eq. (36).

The remaining right most terms in square brackets are reproduced by the soft quark and gluon

operators:

OqnB
s = 8⇡↵s

⇣

 ̄n
S TB n/

2
 n
S

⌘

,

OgnB
s = 8⇡↵s

⇣ i

2
fBCDBnC

S?µ

n

2
· (P+P†)BnDµ

S?
⌘

. (38)

Here the soft fields with n superscripts carry Sn Wilson lines and were defined in Eqs. (13) and

(17) above. The appearance of these Wilson lines is necessary to preserve soft gauge invariance,

and we will see in Sec. IIIA that they arise from integrating out soft attachments to the n collinear

lines. By convention we group the gauge coupling with the soft component of the operator. Due to

our normalization conventions the total operators in Eq. (37) have Wilson coe�cients that are 1

at tree level. To derive the scaling of the operators we note that OiB
n ⇠ �2, and OiB

s ⇠ �3, so with

the 1/P2
? ⇠ ��2 we have the total scaling Oij

ns ⇠ �3. This is the correct scaling for a mixed n-s

Glauber operator that contributes at leading power in the SCET Lagrangian as shown below in

Sec. II E. The lowest order Feynman rules for n-s forward scattering from the operators in Eq. (37)

are shown in Fig. 9.

If there is another collinear sector, such as our n̄, then there will be a set of soft-n̄ scattering

operators analogous to Eq. (37), which we can simply obtain by taking n $ n̄ in the above analysis.

This gives

Oqq
n̄s = OqB

n̄
1

P2
?
Oqn̄B

s , Oqg
n̄s = OqB

n̄
1

P2
?
Ogn̄B

s , Ogq
n̄s = OgB

n̄
1

P2
?
Oqn̄B

s , Ogg
n̄s = OgB

n̄
1

P2
?
Ogn̄B

s , (39)
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notation:

Oqq
nsn̄ = OqB

n

1

P2
?
OBC

s

1

P2
?
OqC

n̄ , Ogq
nsn̄ = OgB

n

1

P2
?
OBC

s

1

P2
?
OqC

n̄ ,

Oqg
nsn̄ = OqB

n

1

P2
?
OBC

s

1

P2
?
OgC

n̄ , Ogg
nsn̄ = OgB

n

1

P2
?
OBC

s

1

P2
?
OgC

n̄ . (29)

On the left-hand side the subscripts indicate that these operators involve three sectors {n, s, n̄},
while the first and second superscript determine whether we take a quark or gluon operator in the

n-collinear or n̄-collinear sectors. Without soft gluons we have OBC
s = 8⇡↵s�BCP2

?.

The n-collinear quark and gluon terms, which occur in the first square bracket in each of the

four terms in Eq. (28), are matrix elements of the n-collinear operators

OqB
n = �nT

B n̄/

2
�n , OgB

n =
i

2
fBCDBC

n?µ

n̄

2
· (P+P†)BDµ

n? . (30)

Each of these operators are bilinears in the quark or gluon building blocks. For the gluon operator,

an extra factor of 1/2 is included to compensate for the symmetry factor from switching the two

Bn?s when computing the corresponding Feynman rules. The operator OgB
n is even under this

swap because both the color factor and momentum factor n̄ · (P + P†) give a change of sign. The

n̄-collinear quark and gluon terms appear as the contributions in the last square brackets of each

of the four terms in Eq. (28), and are matrix elements of the operators,

OqB
n̄ = �n̄T

B n/

2
�n̄ , OgB

n̄ =
i

2
fBCDBC

n̄?µ

n

2
· (P+P†)BDµ

n̄? . (31)

Examining Eqs. (30) and (31) we see that the n-collinear and n̄-collinear results are the same,

just with n $ n̄. These collinear operators are bilinears of the fundamental quark and gluon

gauge invariant building block operators in SCET. Furthermore, both of these operators are octet

combinations of the building blocks. Due to momentum conservation, and the fact that there are

only two building blocks in each collinear sector, each collinear bilinear has a conserved momentum

in its large ⇠ �0 component. This implements the forward scattering kinematics. The tree level

matching that yields the proper Wilson line structure in the operators in Eqs. (30) and (31) is

actually non-trivial due to operator mixing, and is described in detail in Sec. IIIA.

The middle terms in square brackets in Eq. (28), those involving ↵s, do not have objects like

polarization vectors or spinors that correspond to external lines. Nevertheless, they are actually

matrix elements of a soft operator which involves soft gluon fields as well as soft Wilson lines.

Accounting for the 1/P2
? factors in Eq. (29) these operators must reduce to 8⇡↵sP2

? when all soft

fields are turned o↵. The full soft operators are derived in Sec. III B and we obtain

OBC
s = 8⇡↵s

⇢

Pµ
?ST

n Sn̄P?µ � P?
µ g eBnµ

S?ST
n Sn̄ � ST

n Sn̄g eBn̄µ
S?P?

µ � g eBnµ
S?ST

n Sn̄g eBn̄
S?µ

� nµn̄⌫

2
ST
n ig eG

µ⌫
s Sn̄

�BC

. (32)
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combinations of the building blocks. Due to momentum conservation, and the fact that there are

only two building blocks in each collinear sector, each collinear bilinear has a conserved momentum

in its large ⇠ �0 component. This implements the forward scattering kinematics. The tree level

matching that yields the proper Wilson line structure in the operators in Eqs. (30) and (31) is

actually non-trivial due to operator mixing, and is described in detail in Sec. IIIA.

The middle terms in square brackets in Eq. (28), those involving ↵s, do not have objects like

polarization vectors or spinors that correspond to external lines. Nevertheless, they are actually

matrix elements of a soft operator which involves soft gluon fields as well as soft Wilson lines.

Accounting for the 1/P2
? factors in Eq. (29) these operators must reduce to 8⇡↵sP2

? when all soft

fields are turned o↵. The full soft operators are derived in Sec. III B and we obtain

OBC
s = 8⇡↵s

⇢

Pµ
?ST

n Sn̄P?µ � P?
µ g eBnµ

S?ST
n Sn̄ � ST

n Sn̄g eBn̄µ
S?P?

µ � g eBnµ
S?ST

n Sn̄g eBn̄
S?µ

� nµn̄⌫

2
ST
n ig eG

µ⌫
s Sn̄

�BC

. (32)

with bilinear octet operators
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coupling are

�n = W †
n⇠n , Wn = FT Wn[n̄ ·An] = FT P exp

✓

ig

Z 0

�1
ds n̄ ·An(x+ n̄s)

◆

,

�n̄ = W †
n̄⇠n̄ , Wn̄ = FT Wn̄[n ·An̄] = FT P exp

✓

ig

Z 0

�1
ds n ·An̄(x+ ns)

◆

,

 n
s = S†

n s ,  n̄
s = S†

n̄ s , Sn = FT Sn[n ·AS ] = FT P exp

✓

ig

Z 0

�1
ds n ·AS(x+ ns)

◆

, (13)

where FT is for Fourier transform, and P stands for path ordering. The Fourier transform is

often written out in momentum space which enables making explicit the notation for the multipole

expansion (the lines remain local in the coordinate corresponding to residual momenta, even though

they are extended for the larger momentum associated with the s coordinate shown here). Under a

collinear gauge transformation ⇠n ! Un⇠n, Wn ! UnWn, so �n is invariant, and a similar property

holds for the other fields with transformations that have support in their respective momentum

sectors. In general the direction of the Wilson lines in the fields in Eq. (13) are determined by

matching calculations from full QCD, so although we show only one direction in Eq. (13) the

integrals could instead extend over [0,1].4 Expressions for Wilson lines over (0,1) and (�1, 0)

and their Feynman rules are summarized in App. C 3. Note that we follow a convention where the

subscript on the collinear field indicates the type of collinear gluon field that the operator contains,

rather than the light-like direction of the Wilson line. Thus the n subscript on collinear building

blocks means something di↵erent than the n superscript on soft building blocks.

We denote fundamental collinear Wilson lines by Wn, where n̄ ·An = n̄ ·AA
nT

A in Eq. (13), and

adjoint collinear Wilson lines by Wn, where n̄ · An = n̄ · AA
nT

A
adj with (TA

adj)BC = �ifABC . Note

that

W †
nWn = , WAB

n WCB
n = �AC . (14)

These Wilson lines are related by

W †
nT

AWn = WAB
n TB , WnT

AW †
n = WBA

n TB . (15)

Their momentum space expansion with an incoming momentum k for the gluon are

Wn = 1� g TA n̄ ·AA
n,k

n̄ · k + . . . , W †
n = 1 +

g TA n̄ ·AA
n,k

n̄ · k + . . . ,

WAB
n = �AB +

g ifCAB n̄ ·AC
n,k

n̄ · k + . . . , (W†
n)

AB = �AB � g ifCAB n̄ ·AC
n,k

n̄ · k + . . . . (16)

We have analogous results for the fundamental soft Wilson lines Sn, S
†
n, and adjoint soft Wilson

lines Sn and Sn̄.

4 It is important for a proof of factorization that unique directions and structure for Wilson lines can be assigned

to build a fixed basis for the hard scattering operators. The examples of factorization violation in Refs. [49–52]

exploit cases for kT dependent distributions where, in our language, the matching construction should not lead to

unique hard scattering operators.

integrated outs� t

�2 =
t

s
� 1

O(�2) : O(�3) :

O(�3) :determine

�2 ��2 �3

(2 rapidity sectors)

Operators manifestly gauge invariant in all 
sectors
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Construction: �� 1 large Q

fwd. scattering 

mode fields pµ momentum scaling physical objects type
n-collinear �n, Aµ

n (n · p, n̄ · p, p�) � Q(�2, 1,�) n-collinear “jet” onshell
n̄-collinear �n̄, Aµ

n̄ (n̄ · p, n̄ · p, p�) � Q(�2, 1,�) n̄-collinear “jet” onshell
soft �S, Aµ

S pµ � Q(�, �, �) soft virtual/real radiation onshell
ultrasoft �us, Aµ

us pµ � Q(�2,�2,�2) ultrasoft virtual/real radiation onshell
Glauber – pµ � Q(�a,�b,�), a + b > 2 forward scattering potential o�shell

(here {a, b} = {2, 2}, {2, 1}, {1, 2})
hard – p2 � Q2 hard scattering o�shell

n-n̄
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FIG. 4. Tree level matching for the nnn̄n̄ Glauber operators. In a) we show the four full QCD graphs

with t-channel singularites. The matching results are given by reading down each column. In b) we show

the corresponding Glauber operators for the four operators in SCET with two equivalent notations. The

notation with the dotted line in c) emphasizes the factorized nature of the n and n̄ sectors in the SCET

Glauber operators, which have a 1/P2
? between them denoted by the dashed line.

Thus for these tree level 2–2 scattering graphs the Mandelstam invariant t = q2? = �~q 2
? < 0.

For this matching calculation there are four relevant QCD tree graphs, shown in Fig. 4a. They

will result in four di↵erent Glauber operators, whose Feynman diagrams for this matching are

represented by Fig. 4c. The matching must be carried out using S-matrix elements for a physical

scattering process, so we take ?-polarization for the external gluon fields. Expanding in � the

results for the top row of diagrams at leading order is

i
h

ūn
n̄/

2
TBun

ih�8⇡↵s(µ)�BC

~q 2
?

ih

v̄n̄
n/

2
TCvn̄

i

, (28)

i
h

ifBA3A2gµ2µ3
? n̄ · p2

ih�8⇡↵s(µ)�BC

~q 2
?

ih

v̄n̄
n/

2
TCvn̄

i

,

i
h

ūn
n̄/

2
TBun

ih�8⇡↵s(µ)�BC

~q 2
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ih

ifCA4A1gµ1µ4
? n · p1
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i
h

ifBA3A2gµ2µ3
? n̄ · p2

ih�8⇡↵s(µ)�BC

~q 2
?

ih

ifCA4A1gµ1µ4
? n · p1

i

.

In writting these results we have written out the collinear quark spinors but left o↵ the collinear

gluon polarization vectors "µ2A2
n (p2) etc, for simplicity.

We begin our analysis by discussing the SCETII operators whose tree level matrix elements

reproduce the results in Eq. (28). The four SCETII operators whose matrix elements reproduce

Eq. (28) factorize into collinear and soft operators separated by 1/P2
? factors, so we adopt the
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FIG. 4. Tree level matching for the nnn̄n̄ Glauber operators. In a) we show the four full QCD graphs

with t-channel singularites. The matching results are given by reading down each column. In b) we show

the corresponding Glauber operators for the four operators in SCET with two equivalent notations. The

notation with the dotted line in c) emphasizes the factorized nature of the n and n̄ sectors in the SCET

Glauber operators, which have a 1/P2
? between them denoted by the dashed line.

Thus for these tree level 2–2 scattering graphs the Mandelstam invariant t = q2? = �~q 2
? < 0.

For this matching calculation there are four relevant QCD tree graphs, shown in Fig. 4a. They

will result in four di↵erent Glauber operators, whose Feynman diagrams for this matching are

represented by Fig. 4c. The matching must be carried out using S-matrix elements for a physical

scattering process, so we take ?-polarization for the external gluon fields. Expanding in � the

results for the top row of diagrams at leading order is
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In writting these results we have written out the collinear quark spinors but left o↵ the collinear

gluon polarization vectors "µ2A2
n (p2) etc, for simplicity.

We begin our analysis by discussing the SCETII operators whose tree level matrix elements

reproduce the results in Eq. (28). The four SCETII operators whose matrix elements reproduce

Eq. (28) factorize into collinear and soft operators separated by 1/P2
? factors, so we adopt the
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which now involve the n̄-collinear bilinear operators in Eq. (31), and the soft operators
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· (P+P†)Bn̄Dµ

S?
⌘

, (40)

where the fields  n̄
s and Bn̄Dµ

S? can be found in Eqs. (13) and (17). Once again with our conventions

these operators have tree level Wilson coe�cients equal to 1. The lowest order Feynman rules for

n̄-s forward scattering from the operators in Eq. (39) are given by those in Fig. 9 with n $ n̄.

Considering all terms which cause scattering between either colllinear or soft fields we can write

the full Glauber Lagrangian for SCETII as

LII(0)
G = e�ix·P X

n,n̄

X

i,j=q,g

Oij
nsn̄ + e�ix·P X

n

X

i,j=q,g

Oij
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n,n̄

X

i,j=q,g

OiB
n

1

P2
?
OBC

s

1

P2
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n̄ + e�ix·P X

n

X

i,j=q,g

OiB
n

1

P2
?
OjnB

s . (41)

Thus we see that the Glauber Lagrangian consists of operators connecting 3 rapidity sectors

{n, s, n̄} and operators connecting 2 rapidity sectors {n, s} (and {n̄, s}). In SCETI these Glauber

operators are the same as in SCETII, so

LI(0)
G = LII(0)

G . (42)

However due to the appearance of ultrasoft fields, and the di↵erences between how momentum

sectors are separated the precise behavior of these operators in loop diagrams will in general be

di↵erent. We will see this explicitly in our one-loop matching calculations in Secs. IVA and IVC.

3. Matching for All Polarizations

For completeness, we can also repeat the matching calculations involving external gluons with

arbitrary external polarizations. This amounts to not specifying a specific basis for the physical

states, and allows us to see how the scattering with non-transverse polarizations are matched by

the EFT. To carry out this calculation it is important to use the equations of motion to simplify

the gluon matrix elements. For a full theory scattered gluon of momentum p the equations of

motion imply p2 = 0 as well as

0 = pµAµ(p) =
1

2
n̄ · p n·A(p) +

1

2
n · p n̄·A(p) + p? ·A?(p) . (43)

As an explicit example we consider the two-gluon two-quark matching calculation given by the

diagrams shown in Fig. 10. Since the Glauber operator Ogq
n̄s obviously only yields n̄ · A and A?

polarizations, we use Eq. (43) to eliminate the n·A polarization terms in the full theory amplitude.
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structures the four that provide new information come from the structures k1? · k2?fC1AEfC2BE ,

k1? · k2?fC2AEfC1BE , q2?f
C1AEfC2BE , and q2?f

C2AEfC1BE , giving respectively

C9 = �1

2
(96)

C10 = 0 ,

C3 +
1

2
C7 � C9 = �1 ,

�C6 +
1

2
C8 + C10 = 0 .

Combining these results with Eq. (95) yields a unique solution for all the coe�cients, giving our

final answer

C2 = C4 = C5 = C6 = C8 = C10 = 0 , (97)

C1 = �C3 = �C7 = +1 , C9 = �1

2
.

Thus we see that all operators in the basis involving (ST
n̄ Sn) have zero coe�cients, while all op-

erators with (ST
n Sn̄) except O5 have nonzero coe�cients. Putting together these results back into

Eq. (76) the final result is

OBC
s = 8⇡↵s

⇢

Pµ
?ST

n Sn̄P?µ � P?
µ g eBnµ

S?ST
n Sn̄ � ST

n Sn̄g eBn̄µ
S?P?

µ � g eBnµ
S?ST

n Sn̄g eBn̄
S?µ

� nµn̄⌫

2
ST
n ig eG

µ⌫
s Sn̄

�BC

. (98)

This is precisely the result for OAB
s that we quoted earlier in Eq. (32).

IV. ONE LOOP MATCHING CALCULATIONS

A. One Loop Matching in SCETII

In this section we carry out the one-loop matching for forward scattering, comparing graphs in

the full theory and in SCET. The goals of this analysis are to check the completeness of our EFT

description by checking that all infrared (IR) divergences in the full theory are correctly reproduced

by SCET, to understand the structure of ultraviolet and rapidity divergences that appear in the

SCET diagrams, and to characterize the type of corrections that can be generated at the hard scale

by matching.

To be definite, we will consider quark-quark forward scattering, or strictly speaking quark-

antiquark forward scattering (which avoids the need to add the trivial quark-quark exchange con-

tribution). The external momentum routing we use is the same as shown labeled on Fig. 1, which

we repeat for convenience on the first graph of Fig. 19. The large forward momenta are conserved,
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Form is unique to all loops since there are no hard 
corrections to this matching (more later)
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Match at two gluons
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Full Leading Power Glauber Lagrangian:
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TABLE II. Summary of operators appearing in the leading power Glauber exchange Lagrangian in Eq. (41).

towards the n̄-collinear particles. This type of time ordered product will play an important role in

our calculations later on.

Considering all terms which cause scattering between either colllinear or soft fields we can write

the full Glauber Lagrangian for SCETII as
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Thus we see that the Glauber Lagrangian consists of operators connecting 3 rapidity sectors

{n, s, n̄} and operators connecting 2 rapidity sectors {n, s} (and {n̄, s}). For future reference

we summarize the operators appearing in Eq. (41) in Table II.

If consider the interactions of soft and collinear particles in SCETI then none of the tree level

calculations that we have done in SCETII change, and hence the Glauber operators are precisely

the same as in SCETII. In this case we are considering SCETI prior to making the ultrasoft field

redefinition, so

LI(0)
G = LII(0)

G . (42)

However due to the appearance of couplings between the collinear and ultrasoft fields in L(0)
ni for

SCETI, and the di↵erences between how momentum sectors are separated (via subtraction terms)

the precise behavior of these operators in loop diagrams will in general be di↵erent. We will see

this explicitly when comparing our one-loop matching calculations in Secs. VIIA and VIIC for

SCETII and SCETI respectively.

3. Matching for All Polarizations

For completeness, we can also repeat the matching calculations involving external gluons with

arbitrary external polarizations. This amounts to not specifying a specific basis for the physical

coming up 
soon

sum pairwise 
on all collinears

sum on all
collinears 

(2 rapidity sectors)(3 rapidity sectors)

Interactions with more sectors is given by T-products•
No Wilson coefficient ie. no new structures at loop level.  [more later]•

This EFT will allow us to take a systematic operator 
approach to calculating those processes for which 

Glauber DO contribute, e.g. small x and Reggeization.



If Glaubers are contributing this implies that is a 
large hierarchy of scales and thus P.T. will in general 

breakdown necessitating resummations.

s >> t >> ⇤

Log

n(s/t), Logm(t/⇤) Pollutes Perturbative 
Expansion

Canonical RG does not in any straight forward way 
sum these logs, as the invariant s does not flow thru 

any propagator (with no hard scattering), what actually 
shows up is 

Log(P�/⇤1) + Log(⇤1/
p
t) + Log(⇤2/

p
t) + Log(P+/⇤2)

⇤1,⇤2

Rapidity Cut-Offs separated modes 
which live on same mass-shell 

hyperbola.
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ory

Soft Collinear E↵ective Theory

0.9 Forward Scattering with SCET

Forward Scattering using SCET

0.10 SCET with Glauber oper-
ators

SCET with operators for Glauber exchange

0.11 Small x dis

Small-x DIS using SCET
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0.13 Small x dis

Small-x DIS using SCET

Kinematic region of interest:

Tree level diagrams which contributes for small-x region:

Need soft particles to keep final stateX particles on-shell.
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µ Running

Soft

n-Collinear

n̄-Collinear
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Small-x DIS using SCET

Kinematic region of interest:

Diagram which contributes at leading order for small-x region:

Need soft particles to keep final stateX particles on-shell.
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In EFT there exist integrals unregulated by dim. reg. 
These rapidity divergences cancel in the sum of diagrams.



Introduce a rapidity regulator with a rapidity scale ⌫
The rapidity logs are then summed by running collinear 

and soft functions to their natural rapidity scale  
``Rapidity Renormalization Group” (RRG)

Example Reggeization:
Reggeization

Follows from solving the RRG equation

OnOsOn̄

Each sector has a 
natural rapidity scale

⌫ ⇠
p
�t

⌫ ⇠
p
s

We have a choice to either run 
collinear ops from               to 

⌫ ⇠
p
s⌫ ⇠

p
�t or run the soft function.

As opposed to RG anom. dim. we are 
integrating out rapidity shells, depends 
upon IR regulator. this dependence will 
drop out when we calculate something 

physics (e.g. BFKL)
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2. Relations between Anomalous Dimensions

Having established notations for the anomalous dimensions, we next consider the constraints

imposed by the fact that there is no overall ⌫ or µ dependence for the scattering of soft and collinear

particles or the scattering of n-collinear and n̄-collinear particle, since there are no ⌫ or µ dependent

Wilson coe�cients in these Lagrangians. For simplicity we will work out these constraints at one-

loop order, which is the level needed for our analysis. First consider the scattering between two

neighboring rapidity sectors, n-soft scattering mediated by one or more Oij
ns operators. Here there

is no mixing of multiple insertions of LII(0)

G back into a single insertion. The only such diagram

involves the iteration Oik
nsO

kj
ns with a Glauber loop that has one soft and one collinear propagator,

and this loop diagram is identical to the box calculation in Sec. IID 1, and hence is finite. Therefore

we can look at the Oij
ns alone, giving

⌫
d

d⌫

X

ij=q,g

Oij
ns = ⌫

d

d⌫
(OqA

n +OgA
n )

1

P2

?
(OqnA

s +OgnA
s ) = 0 . (144)

This equation indicates that the one-loop rapidity divergences cancel between the soft and n-

collinear loop diagrams for this operator. The fact that there is no nontrivial Wilson coe�cient

between the quark and gluon operators in either the n-collinear or soft sectors also implies that

they must not mix into a di↵erent combination

⌫
d

d⌫
(OqA

n +OgA
n ) = �n⌫(OqA

n +OgA
n ) , ⌫

d

d⌫
(OqnA

s +OgnA
s ) = �s⌫(OqnA

s +OgnA
s ) . (145)

Eqs. (140) and (143) imply that these constants of proportionality are given by

�n⌫ ⌘ �qqn⌫ + �gqn⌫ = �ggn⌫ + �qgn⌫ , �sn⌫ ⌘ �qqsn⌫ + �gqsn⌫ = �ggsn⌫ + �qgsn⌫ . (146)

These results can also be derived starting only with Eq. (144) and setting to zero the linear

combinations of anomalous dimensions multiplying OiA
n (1/P2

?)OjnA
s for each choice of i and j.

The result in Eq. (146) constrains the sum of entries in the columns of �̂⌫On
to be equal. The fact

that only the combination (OqA
n + OgA

n ) appears also implies that �n⌫ is the only combination of

entries from �̂⌫On
that we need, with analogous results for the soft �̂⌫Osn

. The root of these results is

that the rapidity renormalization only depends on the presence of the octet color index A, and not

on the choice of fermion or gluon building blocks. Nevertheless we will see that mixing between

fermions and gluons operators still plays a crucial role in this universality.

Due to the connection between the rapidity cuto↵s in the neighbouring soft and n-collinear

sectors for Oij
ns as expressed by Eq. (144), we also have the additional relation

�qqn⌫ + �gqn⌫ = ��qqsn⌫ � �gqsn⌫ , or �n⌫ = ��sn⌫ . (147)

Thus the relevant rapidity anomalous dimensions in the n-collinear and soft sector are equal with

opposite signs. For the anomalous dimensions for operators appearing in Oij
n̄s analogous results to
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mixing leads to 
universality

There exists strong constraints on the 
rapidity anomalous dimensions due to 
the fact that there is no hard matching 

coefficient.
Consider running of single index operators
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is no mixing of multiple insertions of LII(0)
G back into a single insertion. The only such diagram

involves the iteration Oik
nsO

kj
ns with a Glauber loop that has one soft and one collinear propagator,

and this loop diagram is identical to the box calculation in Sec. VB1, and hence is finite. Therefore,

at this order we can look at the Oij
ns (defined in eq.(37)) alone.

The fact that the tree level matching is exact and that that quark and gluon operators have iden-

tical coe�cients, places strong constraints on the anomalous dimensions. Imposing the condition

that
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d
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X

ij=q,g

Oij
ns = ⌫

d
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(OqA

n +OgA
n )

1

P2
?
(OqnA

s +OgnA
s ) = 0 (141)

implies that
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d
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(OqA

n +OgA
n ) = �n⌫(OqA

n +OgA
n ) , ⌫

d

d⌫
(OqnA

s +OgnA
s ) = �sn⌫(OqnA

s +OgnA
s ) , (142)

i.e. the sum of the two operators must mix into itself.
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�qqn⌫ + �gqn⌫ = ��qqsn⌫ � �gqsn⌫ , or �n⌫ = ��sn⌫ . (144)

Thus the relevant rapidity anomalous dimensions in the n-collinear and soft sector are equal with

opposite signs. For the anomalous dimensions for operators appearing in Oij
n̄s analogous results to

Eqs. (143) and (144) also hold, simply replacing n ! n̄. Therefore we also define �n̄⌫ ⌘ �qqn̄⌫+�gqn̄⌫ =
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is no mixing of multiple insertions of LII(0)
G back into a single insertion. The only such diagram

involves the iteration Oik
nsO

kj
ns with a Glauber loop that has one soft and one collinear propagator,

and this loop diagram is identical to the box calculation in Sec. VB1, and hence is finite. Therefore,

at this order we can look at the Oij
ns (defined in eq.(37)) alone.

The fact that the tree level matching is exact and that that quark and gluon operators have iden-

tical coe�cients, places strong constraints on the anomalous dimensions. Imposing the condition
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We will see in the next section that if we consider the virtual ⌫-anomalous dimensions alone,

then they depend on a logarithm of the IR regulator, ln(m2). This dependence is canceled when

we consider the full anomalous dimensions obtained by the sum of divergences in virtual and real

radiation graphs. Because of this cancellation, the relations derived here in Eqs. (144) and (149)

also apply for the corresponding real radiation graphs.

3. One-Loop Virtual Anomalous Dimension Results

Here we consider the one-loop calculation of the various virtual contributiosn to anomalous

dimensions discussed in Sec. VIIB 1 with the goal of identifying the non-trivial terms and cross-

checking the various relations discussed in Sec. VIIB 2. With external quarks the results can

be determined from the SCETII diagrams given in Sec. VIIA, while results with external gluons

require additional calculations.

First consider the n-collinear sector with the bilinear quark and gluon operators OqA
n and

OgA
n . For OqA

n mixing back into OqA
n there are W Wilson line graphs and the vertex graph (plus

wavefunction renormalization), all of which can be read o↵ from the results in Sec. VIIA by

stripping o↵ the appropriate prefactor that is related to the other sectors. We have

n n

n
+ n n

n
+ n n

n
n n + w.fn. renorm

= Snq ↵sCA

4⇡



w2 2h
�

✏, µ2

m2

�

⌘
+ w2 2

✏
ln

⇣ ⌫

n̄ · p
⌘

+
3

2✏

�

= Snq �V qq
n , (152)

where the spinors are contained in the tree level matrix element Snq = ūnTA n̄/
2un, and h(✏, µ2/m2)

was defined in Eq. (118). Here and below we will drop the factors of w which multiple the

pure 1/✏ poles. To obtain Eq. (152) we have taken Fig. 21g,h,i, stripped o↵ a prefactor of

i(v̄n̄T̄An/
2 vn̄)(8⇡↵s)/t, which includes the factors associated with the tree level matrix element of

the non n-collinear parts of the operator, namely (1/P2
?)OAB

s (1/P2
?)O

B
n̄ , as well as an overall i.

Since we are interested in determining anomalous dimensions, only the divergent terms that are

needed to determine the �V qq
n counterterm are shown in Eq. (152) and the results below, and we

now include factors of the rapidity coupling w2 = w2(⌫) (which is needed to determine the rapidity

anomalous dimension, and then can be set to 1). Just as discussed in the matching calculation,

the collinear tadpole loop graphs vanish due to their soft zero-bin subtractions

n nn

n n
= 0 ,

n nn

n n

= 0 . (153)
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There is only one non-zero graph where the operator OgA
n mixes into OqA

n , namely the V-graph.

This result can be again found from the results in Sec. VIIA, and determines the �V gq
n counterterm,

n n
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�

= Snq �V gq
n , (154)

where the function g(✏, µ2/(�t)) is given in Eq. (114).

To determine the remaining n-collinear counterterms we need to consider graphs involving

external gluons, which require new calculations. Rather than giving a detailed discussion of these

diagrams we simply relegate non-trivial ingredients like the 3-gluon vertex from Ogg
n to App. C,

and quote here the final results for the divergent terms (using Feynman gauge):
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, (155)

where Sng = ifABCg��? n̄ · p"B�"C� is the tree level matrix element of OgA
n . Just like in the quark

calculation, the collinear gluon tadpole graphs give zero due to their soft zero-bin subtraction.

There is also a graph with the four-gluon vertex which has a vanishing integral even before the

zero-bin subtraction. Thus we have

n nn
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= Sng ↵sCA
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= 0 . (156)

The remaining contributions determine the �V gg
n counterterm to be

�V gg
n =
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It is interesting to note that that the CA/✏ terms cancel.

Finally, we consider the mixing of OqA
n into OgA

n . The relevant diagrams are

n

n

n

n

n
+

n

n

n

n

n
= Sng ↵snfTF
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where we have summed over all possible nf light flavors that can appear in the OqA
n operator.

after zero-bin 
subtraction

Collinear 
Runnings

Rapidity divergence

dimension with the hard anomalous dimension which is linear in the logarithm with coe�cient

�cusp. The universal relation between the collinear c and soft S anomalous dimension

� 2Zc = ZS (4.20)

follows automatically from the ⌫ independence of the hard function, as will be discussed

below.

Let us now apply the RRG to the Sudakov case we studied above. Since our regulator

allows us to define the jet and soft functions independently we may renormalize them in

standard fashion by absorbing 1
✏ and 1

⌘ divergences in the renormalization constants, and

then run renormalized quantities individually. We define the renormalization factor Zn, ZS

via

JR
n = Z1/2

 Z�1
n JB

n SR = Z�1
S SB (4.21)

where IB corresponds to bare quantities and IR to renormalized. Then using our result from

above, at one loop we have

ZS = 1 � g(µ)2w2CF
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where Z is wave function renormalization which is the same as in full QCD.

Z = 1 � g(µ)2CF

16⇡2✏
. (4.23)

The µ anomalous dimensions are given by
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.

As a consistency check see that
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µ = ��H =

g2(µ)CF
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ln
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3
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where �H is the anomalous dimension of the hard matching coe�cient.

The calculation of the ⌫ anomalous dimensions necessitates care. The bare book keeping

parameter is ⌫ independent and thus, in analogy with the coupling g, the “renormalized”14

w obeys

⌫
@

@⌫
w = �⌘

2
w (4.26)

14It is important to remember that w is not a coupling, but strictly a calculational tool.
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Again the collinear quark loop tadpole graph is exactly cancelled by the soft zero-bin subtraction,
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Thus, the result in Eq. (158) yields the counterterm for OqA
n mixing into OgA

n ,

�V qg
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At one-loop order the n-collinear rapidity anomalous dimension contributions are given by

�ijn⌫ = �(⌫d/d⌫)�V ij
n . Di↵erentiating both the explicit ln ⌫ dependence and the ⌫ dependence in

the coupling w by using (⌫d/d⌫)w2 = �⌘w2 (then setting the renormalized w = 1), we have
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For the µ anomalous dimensions at one-loop we have �ijnµ = �(µd/dµ)�V ij
n . Noting that

↵s(µ)g(✏, µ2/(�t)) and ↵s(µ)h(✏, µ2/m2) are both µ-independent, and recalling that (µd/dµ)↵s(µ) =
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Note that these results satisfy the necessary condition for the paths in ⌫ and µ space to be in-

dependent [31], (⌫d/d⌫)�ijnµ = (µd/dµ)�ijn⌫ . From these results we can immediately check that

we reproduce the first relation in each of Eq. (143) and Eq. (147), �qqn⌫ + �gqn⌫ = �ggn⌫ + �qgn⌫ and

�qqnµ + �gqnµ = �ggnµ + �qgnµ = 0. Thus there is no overall µ anomalous dimension for the relevant

combination of operators, (OqA
n + OgA

n ), as anticipated. It is interesting to note that this occurs

due to a cancellation of terms between the anomalous dimensions generated by the two individual

operators. We also obtain the relevant rapidity anomalous dimension for (OqA
n +OgA

n ) which is
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. (163)
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Again the collinear quark loop tadpole graph is exactly cancelled by the soft zero-bin subtraction,
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4. Solving the RRG equation: Reggeization

As we have seen in the matching calculation, the result for the one loop scattering amplitude

for anti-collinear particles, involves logs of the ration s/(�t). To resum these logs we utilize the

RRG to ensure that all of the individual factorized pieces of the operator are evaluated at the

appropriate rapidity scales. This Greens function is not physical, so we should expect it to depend

upon the IR regulator, but it is still of formal interest.

If we consider the operator Oij
nsn̄, the soft piece of the factorized matrix will be void of large logs

if we choose ⌫ = �t, and the large logs will reside in the two collinear functions. Due to the form

of the anomalous dimension equation, we see that the collinear operators (summed over quark and

gluon) obey a standard RG evolution equation

d

d log ⌫
(OqA

n +OgA
n ) = �n⌫(OqA

n +OgA
n ) (172)

whose solution is given by
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⌘��n⌫/2
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n +OgA
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p
s) . (173)

Combining this with the analogous result for OjA
n̄ we find the standard Reggeization result for the

leading logs in the amplitude, TODO:

Check this

(TODO)
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where ↵ = ��n⌫ is the Regge exponent. For the renormalized operators on the RHS there are no

large logarithms in their matrix elements, since they are evaluated at the scales ⌫ which minimize

their respective rapidity logarithms. If we had instead started the evolution at ⌫ =
p
s then there

would be no evolution for the collinear operators, and the soft operators evolution would generate

this same leading logarithmic Regge resummation factor.

C. One Loop Matching in SCETI

In this section we repeat the matching calculation carried out in Sec. VIIA, but in the theory

SCETI. Although our focus in the majority of this paper is on SCETII, we mentioned in Sec. VA

that the Glauber Lagrangian for SCETI is identical (needs modifiction)in form to that for

SCETII, and only di↵ers in the form of its 0-bin subtractions. This section will serve to check that

we have the proper form of the Glauber Lagrangian for SCETI at one-loop, and highlight some

di↵erences between the results in various sectors between SCETII and SCETI. The main distinction

for SCETI is the presence of ultrasoft modes, which live at a scale parametrically smaller than the
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0.4 Small x resummation

Small-x DIS

This corresponds to leading log resummation of terms (↵
s

ln x)n

• Solved using Mellin Transform

• Has been evaluated to Next to leading log x resum-
mation

[Author 1, Author 2, Author 3; 1234.5678]
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in small x limit
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Small-x DIS using SCET
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Tree level diagrams which contributes for small-x region:

Need soft particles to keep final stateX particles on-shell.
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0.13 Small x dis

Small-x DIS using SCET

Kinematic region of interest:

Diagram which contributes at leading order for small-x region:

Need soft particles to keep final stateX particles on-shell.
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16

Leading Power: in EFT arises from TOP of 
Glauber operators on each side of the cut. 
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Here we have shown only the photon exchange piece of the leptonic tensor and suppressed
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From Eq. (3.2) and Eq. (3.3) we note that both Wµ⌫ and L
µ⌫

are dimensionless. We strip o↵

the electron part from Eq. (3.13) to form RPI
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0.14 Factorization Theorem for
Small x

SCET Factorization Formula for Small x

Now we have all the ingredients to write down SCET
factorization formula for small-x DIS.

Assemble relevant Glauber operators.

Separate into soft and collinear parts.

Focus on the QCD part of the cross section.

17

0.14 Factorization Theorem for
Small x

SCET Factorization Formula for Small x

Now we have all the ingredients to write down SCET
factorization formula for small-x DIS.

Assemble relevant Glauber operators.

Separate into soft and collinear parts.

Focus on the QCD part of the cross section.

17

0.8 Soft Collinear E↵ective The-
ory

Soft Collinear E↵ective Theory

0.9 Forward Scattering with SCET

Forward Scattering using SCET

0.10 SCET with Glauber oper-
ators

SCET with operators for Glauber exchange

0.11 Small x dis

Small-x DIS using SCET

8

[Bauer, Fleming, Luke; hep-ph/0005275]

[Bauer et al.; hep-ph/0011336]

[Bauer, Stewart; hep-ph/0205289]

SCET lectures by Iain Stewart:
http://courses.edx.org/c4x/MITx/8.EFTx/asset/notes scetnotes.pdf

[Donoghue et al.; arXiv:1405.1731]

[Rothstein, Stewart; arXiv:1601.04695]

[Marzani, Neill, AP, Rothstein, Stewart]

[Chiu et al.; arXiv:1202.0815]

[Catani, Hautmann; hep-ph/9405388]

6

+ − ⊥

(1, λ2, λ)

(λ, λ2, λ)

(λ, λ, λ)

(λ2, λ, λ)

(λ2, 1, λ)

ks1

ks2

zP P ′

q′⊥

q⊥ q⊥

q′⊥

k k′

e−, n̄

q/g, n

G

γG
s

s

n̄

n

F (x,Q2) =

Z 1

0

dz

z

d

2
q

0
?Cn[q

0
?, ⌫/(zP�)]S(q

0
?, q?, ⌫/(xP�))



Run soft function in rapidity to the scale ⌫ = P�

In that way no large rapidity logs in collinear function.

Rapidity running for soft function is exactly BFKL:

94

FIG. 24. Pictoral representation of the soft-collinear factorization of the lowest order forward scattering

Glauber interaction. This factorization is linear in the interaction and leads to the BFKL equation.

Note that here we have not factorized in the scales t and ⇤2
QCD, so the collinear and soft functions

contain both of these scales, with the dependence on t appearing through q? or q0?. The factoriza-

tion in Eq. (206) for T(1,1) separates the modes in rapidity, allowing for a resummation of ln(s/t)’s,

but does not include a factorization from expanding in ⇤2
QCD/t ⌧ 1.

The result in Eq. (206) gives a factorized form for the forward scattering process at lowest order

in the Glauber exchange operators, but to all orders in the soft and collinear Lagrangians, L(0)
S

and L(0)
n,n̄. Therefore the functions Cn(q?), Cn̄(q0?), and SG(q?, q0?) each have non-trivial series in

↵s. In the next two sections, Secs. VIII B and VIIIC we will consider the renormalization of the

lowest order transition amplitude T(1,1), which at leading logarithmic order simply involves the

rapidity renormalization of these soft and collinear functions, and only requires O(↵s) real and

virtual calculations. For the full scattering corrections at this same order in ↵s also occur from a

term with more insertions of the Glauber operators:
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At this order in ↵s we can either contract both the Oi
nO

i
n and Oj

n̄O
j
n̄ in U(2,2) to give a Glauber

box diagram as in Fig. 12 or we could attach the two forward collinear lines in each of Oi
nO

i
n

and Oj
n̄O

j
n̄ to di↵erent partons in the incoming hpnp0̄n| state. Neither of these contributions has

a logarithmic rapidity divergence, and hence it su�ces to consider just T(1,1) when deriving the

leading-logarithmic renormalization equations.

Introducing the rapidity cuto↵ ⌫ and renormalized collinear and soft functions we have

T(1,1) =

Z

d2q?d2q0? Cn(q?, p�, ⌫)SG(q?, q0?, ⌫)Cn̄(q
0
?, p

0+, ⌫) . (210)

The physical picture for this factorization of the forward cross section is given in Fig. 24. In the

next section we derive the leading-logarithmic evolution equation for the soft function SG(q?, q0?, ⌫)

and show that it is the BFKL equation. Then in Sec. VIII C we will derive the BFKL equations
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for Cn(q?, p�, ⌫) and Cn̄(q0?, p
0+⌫) by using renormalization group consistency. We will further

discuss the more general set of matrix elements for the U(k,k0) case, where we allow an arbitrary

number of insertions of the forward scattering operators, in Sec. ?? below.

B. BFKL Equation for the Soft Function

In evaluating matrix elements of the forward scattering operator, large logs arise due to the

tension between the collinear modes whose natural rapidity scale is ⌫c ⇠
p
ŝ and the soft mode for

which ⌫s ⇠ p�t. Thus the large logs can not be minimized with a single choice of the rapidity

scale ⌫ in the SCET matrix elements. Since the final result is independent of which ⌫ we choose, we

will take ⌫ = ⌫c so that all the large logs reside in the soft part of the matrix element. These logs

are summed up by running the soft function in rapidity space from ⌫s to ⌫c. For the calculations

in this section we set the IR mass regulator m = 0 since infrared divergences will cancel in the sum

of real and virtual diagrams. We also set d = 4 since only the rapidity divergences will be relevant

for our RGE analysis.

We will be working in the limit where t � ⇤QCD so that we may treat Glauber exchange

perturbatively. To sum the logarithms at leading logarithmic order (LL) we only need to consider

the k = k0 = 1 term in Eq. (196), and this Glauber operator e↵ectively acts like an external current.

We label the soft piece of the forward scattering operator in terms of the incoming q? and

outgoing q0? such that the lowest order Feynman rule is given by
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s(1,1) was defined in Eq. (203), and this lowest order contribution comes from OAB

s (q?, q0?)

which was defined in Eq. (57). Thus at the level of the amplitude squared
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Here the solid vertical line denotes the final state cut. The color factor �AA = N2
c � 1.

To renormalize the SG(q?, q0?) matrix element we must consider the O(↵s) real and virtual

corrections. The real radiation correction is calculated using the one-soft gluon Feynman rule of

OAB
s (q?, q0?) (equivalent to the Lipatov vertex) which was given in Eq. (6), and implementing

the prefactors in the definition in Eq. (205). We let the outgoing momentum of the soft gluon

be k = q + q0, and note that the multipole expansion for collinear particles restricts the O(�)

This form will allows to renormalize 
through a convolution
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for our RGE analysis.
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the k = k0 = 1 term in Eq. (196), and this Glauber operator e↵ectively acts like an external current.
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s(1,1) was defined in Eq. (203), and this lowest order contribution comes from OAB
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which was defined in Eq. (57). Thus at the level of the amplitude squared
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Here the solid vertical line denotes the final state cut. The color factor �AA = N2
c � 1.

To renormalize the SG(q?, q0?) matrix element we must consider the O(↵s) real and virtual

corrections. The real radiation correction is calculated using the one-soft gluon Feynman rule of

OAB
s (q?, q0?) (equivalent to the Lipatov vertex) which was given in Eq. (6), and implementing

the prefactors in the definition in Eq. (205). We let the outgoing momentum of the soft gluon

be k = q + q0, and note that the multipole expansion for collinear particles restricts the O(�)
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momentum flow as discussed in Sec. VB2. This gives n · q = n · k and n̄ · q0 = n̄ · k. Summing over

polarizations in Feynman gauge, the square of the one-gluon Feynman rule is
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where in the last equality we used the soft gluon equations of motion 0 = k2 = (q + q0)2 =

n · q n̄ · q0� (~q?+ ~q 0
?)

2 to eliminate all but the last term in the large round brackets, and to replace

the product n · q n̄ · q0. Note that this squared matrix element is independent of the longitudinal

gluon momentum. Since the surviving term in Eq. (213) was generated by the soft Wilson lines in

the operator OAB
s (q?, q0?) we must also include appropriate factors of the rapidity regulator, giving

w2|2kz|�⌘⌫⌘. This factor regulates the soft gluons phase space integral, which is
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Here C(k) = �(k2)✓(k0). Putting these pieces together, and keeping only the 1/⌘ divergent contri-

bution, for the contribution to the O(↵s) correction to SG(q?, q0?) we have
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where in the second equality we took ~k? ! ~q?�~k?. In the last equality we used d�2k? = d2k?/(2⇡)2

and the tree level S(0)
G from Eq. (340).

For the soft virtual corrections we have contributions from the flower and eye graphs, which we

must incorporate at a level where we have not yet performed the k? loop integration. To obtain

results for
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where in the last equality we used the soft gluon equations of motion 0 = k2 = (q + q0)2 =

n · q n̄ · q0� (~q?+ ~q 0
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2 to eliminate all but the last term in the large round brackets, and to replace

the product n · q n̄ · q0. Note that this squared matrix element is independent of the longitudinal

gluon momentum. Since the surviving term in Eq. (213) was generated by the soft Wilson lines in

the operator OAB
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Here C(k) = �(k2)✓(k0). Putting these pieces together, and keeping only the 1/⌘ divergent contri-

bution, for the contribution to the O(↵s) correction to SG(q?, q0?) we have
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where in the second equality we took ~k? ! ~q?�~k?. In the last equality we used d�2k? = d2k?/(2⇡)2

and the tree level S(0)
G from Eq. (340).
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where in the last line we used d�2k? = d2k?/(2⇡)2 and the tree level S(0)
G from Eq. (340). The

factors of 2 next to the graphs appear because we get the same contribution when the virtual loop

appears on either side of the cut.

To derive the canonical form of the BFKL equation we define the soft function with a slightly

di↵erent normalization,
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With this modified normalization, the results up to O(↵s) from Eqs. (340,215,219) can be summa-

rized as yielding
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The rapidity divergence in the soft function is renormalized by a standard SCET soft function

counterterm Z(q?, q0?) through the convolution

eSG(~q?, ~q 0
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To cancel the 1/⌘ divergence we require

Z(q?, k?) = �2(~q? � ~k?)� 2CA↵s(µ)w2(⌫)

⇡2 ⌘



1

(~k? � ~q?)2
� �2(~q? � ~k?)

Z

d2k?~q 2
?

2~k 2
?(~k? � ~q?)2

�

. (223)

The rapidity renormalization group (RRG) equation then follows from the ⌫-independence of the

bare soft function,
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where in the last line we used d�2k? = d2k?/(2⇡)2 and the tree level S(0)
G from Eq. (340). The

factors of 2 next to the graphs appear because we get the same contribution when the virtual loop

appears on either side of the cut.
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The rapidity divergence in the soft function is renormalized by a standard SCET soft function

counterterm Z(q?, q0?) through the convolution

eSG(~q?, ~q 0
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The rapidity renormalization group (RRG) equation then follows from the ⌫-independence of the

bare soft function,
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The rapidity divergence in the soft function is renormalized by a standard SCET soft function

counterterm Z(q?, q0?) through the convolution

eSG(~q?, ~q 0
?, ⌫) =
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The rapidity renormalization group (RRG) equation then follows from the ⌫-independence of the

bare soft function,
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where in the last line we used d�2k? = d2k?/(2⇡)2 and the tree level S(0)
G from Eq. (340). The
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The rapidity divergence in the soft function is renormalized by a standard SCET soft function

counterterm Z(q?, q0?) through the convolution

eSG(~q?, ~q 0
?, ⌫) =
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The rapidity renormalization group (RRG) equation then follows from the ⌫-independence of the

bare soft function,
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The rapidity divergence in the soft function is renormalized by a standard SCET soft function

counterterm Z(q?, q0?) through the convolution

eSG(~q?, ~q 0
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The rapidity renormalization group (RRG) equation then follows from the ⌫-independence of the

bare soft function,
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Writing out the derivatives of the two terms and inverting, we find that the renormalized soft

function obeys the RGE equation

⌫
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Inserting the one-loop result from Eq. (223) and using (⌫d/d⌫)w2(⌫) = �⌘w2(⌫) then sending
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Note that this anomalous dimension is not just a function of the di↵erence q? � q0?, but it is easy

to check from Eq. (227) that it is symmetric,

�SG
(q?, q0?) = �SG

(q0?, q?) . (228)

The anomalous dimension �SG
yields an RGE for SG(q?, q0?, ⌫) which is precisely the leading

logarithmic BFKL equation,
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The BFKL equation is often written in terms of the derivative of a rapidity, Y = ln(⌫2). The fact

that @/@Y = (1/2)⌫d/d⌫ explains our factor of 2 in the prefactor on the RHS of Eq. (229). Note

that in our SCET calculation, the fact that Eq. (229) is obtained for the all orders soft function

SG (rather than just the one-loop soft function) follows immediately from the structure of the

e↵ective field theory operators and the form of the rapidity renormalization in Eq. (222). In classic

derivations of the BFKL equation, this step is often quite involved.

C. BFKL Equations for the Collinear Functions via Consistency
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This result su�ces to derive the LL RGE equation for Cn and Cn̄, which will also be given by

BFKL equations. Generically, the form of the SCET matrix elements implies that we can have
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? eSG(q?, q0?, ⌫)
2~k2?(~k? � ~q?)2

�

. (229)

The BFKL equation is often written in terms of the derivative of a rapidity, Y = ln(⌫2). The fact

that @/@Y = (1/2)⌫d/d⌫ explains our factor of 2 in the prefactor on the RHS of Eq. (229). Note

that in our SCET calculation, the fact that Eq. (229) is obtained for the all orders soft function

SG (rather than just the one-loop soft function) follows immediately from the structure of the

e↵ective field theory operators and the form of the rapidity renormalization in Eq. (222). In classic

derivations of the BFKL equation, this step is often quite involved.

C. BFKL Equations for the Collinear Functions via Consistency

At leading logarithmic order the ⌫ dependence in the soft and collinear functions of the transition

matrix T(1,1) must cancel, so

⌫
d

d⌫

Z

d2q?d2q0? Cn(q?, p�, ⌫)SG(q?, q0?, ⌫)Cn̄(q
0
?, p

0+, ⌫) = 0 . (230)

This result su�ces to derive the LL RGE equation for Cn and Cn̄, which will also be given by

BFKL equations. Generically, the form of the SCET matrix elements implies that we can have

⌫
d

d⌫
Cn(q?, p�, ⌫) =

Z

d2k? �C(q?, k?) Cn(k?, p�, ⌫) , (231)

⌫
d

d⌫
Cn̄(q?, p0+, ⌫) =

Z

d2k? �C(q?, k?) Cn̄(k?, p0+, ⌫) .

BFKL



Integrate out modes with off-shellness of 
order t in collinear function and run 

where

⌫
@

@⌫
U(q0?, q

00
?, ⌫, ⌫s) =

Z
d2k?�s(q

0
?, k?)U(k?, q

0
?, ⌫, ⌫s) , (5.2)

and �
S

(q0?, k?) is the BFKL kernel, given by

�
s
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C
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↵
s

(µ)
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h 1
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� �2(~q 0
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~q 02
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(~k? � ~q 0
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2

i
. (5.3)

The above result is half of that of the forward scattering case. We also note that �
c

(q?, k?) =

��
s

(k?, q?).

At LL the BFKL solution for U is given by

U(q0?, q
00
?, ⌫c, ⌫s) =

1X

n=�1

Z
1/2+i1

1/2�i1
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2⇡i
U
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(�,
⌫
s

⌫
c

)(~q 02
? )��1(~q 002
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?�1ein(�

0��) , (5.4)

which holds for 0 < Re � < 1. U
n

(�, ⌫
s

/⌫
c

) is given by

U
n

⇣
�,
⌫
s

⌫
c

⌘
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1

⇡
exp

h↵
s

(µ)C
A

⇡
�(n, �) ln

⇣⌫
c

⌫
s

⌘i
. (5.5)

The boundary condition U(q0?, q
00
?, ⌫, ⌫) = �2(~q 0

? � ~q 00
?) fixes Re � = 1/2 and gives the 1/⇡

prefactor. Since C
n

is only a function of ~q? because of the angular integration the � dependence

drops out and only the n = 0 term survives. We define

�(�) ⌘ �(0, �) = 2 (1)�  (�)�  (1� �) , (5.6)

Where  (z) is the polygamma function defined as  (z) = d/dz ln�(z).

For later convenience we do a change of variables for � integration. Let � = 1/2 + �0 such

that �0 varies from �i1 to i1. Hence �? = 1/2� �0 = 1� �.
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Now redefine �0 = � � 1/2.
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And, lastly, take � ! 1� � to get

U(q0?, q
00
?, ⌫c, ⌫s) =

Z
1/2+i1

1/2�i1

d�

2⇡i
U(�,

⌫
s

⌫
c

)(~q 02
? )��(~q 002

? )��1 . (5.7)

6 Collinear Factorization via matching at µ ⇠ Q

We consider the case where the soft quarks in the soft function are heavy quarks. Hence the

pdf should be matched unto the collinear function:

C
n

⇣
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z
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f(⇠, µ) . (6.1)
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5 Collinear Factorization via matching at µ ⇠ Q

We consider the case where the soft quarks in the soft function are heavy quarks. Hence the

pdf should be matched unto the collinear function:
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Here ⇠ ⇠ z ⇠ 1. We have factored out a 1/(~q 0
?)

2 which makes the matching coe�cient H
n

dimensionless (the pdf is also dimensionless). This implies that the function should depend

solely on the ratio of q0? and µ scales.

Putting all the pieces together
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Final step: Match the collinear function to the PDF.

Demand the soft loop contains heavy quarks:
Matching only comes from the collinear function.

This result can be recast into the formula written by
Catani and Hautmann in 1994.

One can now calculate small-x resummed splitting func-
tions.

Catani-Hautmann relied on resumming BFKL in
n = 4 + ✏ dimensions to keep track of IR divergences.
This is much harder to carry out than our approach!
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Conclusions
Set up systematic EFT to address the question of 

Glauber Gluons (Completes SCET)

• Universal action applicable to all kinematic 
situations. 

• Address factorization violation. 

• When Glaubers do contribute allow for the 
resummations of logs via combination of RRG and 
RG.


