Top Mass Measurements with/without Grooming

Iain Stewart MIT

Advances in QCD and Applications to Hadron Colliders Workshop at Argonne National Lab October 2016

Outline

• Top Mass Measurements at the LHC

 $M_t^{\text{peak}} = m_t + (\text{nonperturbative effects}) + (\text{perturbative effects})$

- Factorization for $e^+e^- \to t\bar{t}$
- Top Mass Calibration for Monte Carlo Generators
 [Butenschoen, Dehnadi, Hoang, Mateu, Preisser, IS arXiv:1608.01318]
- Factorization for $pp \rightarrow t\bar{t}$ with & without Jet grooming
- Predictions for LHC top mass measurements with SoftDrop [A.Hoang, S.Mantry, A.Pathak, IS (soon)]
- Conclude

LHC & Tevatron Top Mass Measurements

Use Direct Reconstruction to obtain sensitivity:

Use Monte Carlo Templates

Determine best fit value of Monte Carlo top-mass parameter:

CMS: $m_t^{\text{MC}} = 172.44 \pm 0.49$ ATLAS: $m_t^{\text{MC}} = 172.84 \pm 0.70$

What is $m_t^{ m MC}$?

- Natural to think it is the pole mass, but its not.

 - Pole Mass involves virtual integration over all momenta.
 MC has shower cutoff which restricts real radiation. Due to unitarity, this cutoff also affects virtual radiation & m_t^{MC} defn.

What is m_t^{MC} ?

A.Hoang, IS arXiv:0808.0222

• It is not the $\overline{\mathrm{MS}}$ mass.

 $\overline{m}_t \alpha_s \gg \Gamma_t \simeq 1.4 \,\mathrm{GeV}$

Not compatible with Breit-Wigner in Monte Carlo.

What is $m_t^{
m MC}$? A.Hoang, IS arXiv:0808.0222

It is most like a short distance mass with cutoff $R\simeq 1\,{
m GeV}$

 $\begin{array}{ll} \mbox{MSR mass:} & m_t^{\rm MSR}(R\simeq 1{\rm GeV})\simeq m_t^{\rm MC} \\ & \mbox{vary R:} & {\rm definition\ uncertainty} \sim 0.5\,{\rm GeV} \end{array}$

<u>MS Scheme:</u> $(\mu > \overline{m}(\overline{m}))$

 $\overline{m}(\overline{m}) - m^{\text{pole}} = -\overline{m}(\overline{m}) \left[0.42441 \,\alpha_s(\overline{m}) + 0.8345 \,\alpha_s^2(\overline{m}) + 2.368 \,\alpha_s^3(\overline{m}) + \ldots \right]$

MSR Scheme: $(R < \overline{m}(\overline{m}))$ \bigvee Hoang, Jain, Scimemi, IS arXiv:0803.4214

 $m_{\rm MSR}(R) - m^{\rm pole} = -R \left[0.42441 \,\alpha_s(R) + 0.8345 \,\alpha_s^2(R) + 2.368 \,\alpha_s^3(R) + \ldots \right]$

 $m_{\rm MSR}(m_{\rm MSR}) = \overline{m}(\overline{m})$

Extracting a Short Distance Top Mass at the LHC

To improve on the current experimental measurements:

- must use a kinematically sensitive LHC observable
- theoretically tractable (= factorization at Hadron level), to obtain a measurement in a precise mass scheme defined at Lagrangian level.
- control contamination (ISR, Underlying Event, ...)

First simplification:

boosted top quarks, $Q = 2p_T \gg m_t$

enables us to be inclusive over decay products

Theory Issues for $pp \rightarrow t\bar{t}X$

- jet observable
- suitable top mass for jets
- initial state radiation
- final state radiation
- underlying event/MPI
- color reconnection
- beam remnant
- parton distributions
 - sum large logs $Q \gg m_t \gg \Gamma_t$

Theory Issues for $pp \rightarrow t\bar{t}X$

- jet observable $\star \star$
- suitable top mass for jets \star
- initial state radiation
- final state radiation \star
- underlying event/MPI
- color reconnection \star
- beam remnant
- parton distributions
 - sum large logs $Q \gg m_t \gg \Gamma_t$ \bigstar

First $e^+e^- \rightarrow t\bar{t}X$ and the issues \bigstar

Peak region:

$$s_t \equiv M_t^2 - m^2 \sim m\Gamma \ll m^2$$
$$\hat{s}_t \equiv \frac{M_t^2 - m^2}{m} \sim \Gamma \ll m$$

Breit Wigner: $\frac{m\Gamma}{s_t^2 + (m\Gamma)^2} = \left(\frac{\Gamma}{m}\right) \frac{1}{\hat{s}_t^2 + \Gamma^2}$

Factorization:

Fleming, Hoang, Mantry, IS

hep-ph/0703207 hep-ph/0711.2079

Jet Function Results up to $\mathcal{O}(\alpha_s^2)$ & NNLL:

Jain, Scimemi, I.S. arXiv:0801.0743

Top Mass Calibration of Monte Carlo

[Butenschoen, Dehnadi, Hoang, Mateu, Preisser, IS arXiv:1608.01318]

Calibrate the m_t^{MC} parameter in Monte Carlo against Hadron level theory predictions with definite m_t parameter

$e^+e^- \rightarrow t\bar{t}$ theory:

- NNLL + NLO + nonsingular + hadronization + renormalon subt.
- VFNS for final state jets with massive quarks

[Gritschacher, Hoang, Jemos, Mateu, Pietrulewicz 2013, 2014]

[Butenschon, Dehnadi, Hoang, Mateu (to appear)]

• MSR mass, Soft Gap Scheme, and R-evolution

[Hoang, Jain, Scimemi, Stewart 2010] [Hoang, Kluth 2008]

• 2-jettiness variable: $au_2 = 1 - \max_{\vec{n}_t} \frac{\sum_i |\vec{n}_t \cdot \vec{p}_i|}{Q}$

 $\frac{d\sigma}{d\tau} = f(m_t^{MSR}, \alpha_s(m_Z), \Omega_1, \Omega_2, \dots, \mu_H, \mu_J, \mu_S, \mu_M, R, \Gamma_t)$ any scheme non-perturbative renorm. scales finite lifetime

Fit Procedure:

Pythia 8.205

- Fix m_t^{MC} . Generate MC data with $Q = 700, 800, \dots, 1300, 1400$ GeV.
- For given μ_i , Fit theory in peak region to determine Ω_i and m_t
- Repeat 500 times for different μ_i to obtain perturbative uncertainty

Results:

- m_t^{MC} differs from m_t^{pole} by 0.9 GeV (NNLL) or 0.6 GeV (NLL)
- m_t^{MC} compatible with $m_t^{\text{MSR}}(R = 1 \,\text{GeV})$

$m_t^{\rm MC} = 173 { m GeV} \left({ au_2^{e^+ e^-}} \right)$					
mass	order	central	perturb.	incompatibility	total
$m_{t,1{ m GeV}}^{ m MSR}$	NLL	172.80	0.26	0.14	0.29
$m_{t,1{ m GeV}}^{ m MSR}$	$\rm N^2 LL$	172.82	0.19	0.11	0.22
$m_t^{ m pole}$	NLL	172.10	0.34	0.16	0.38
$m_t^{ m pole}$	$\rm N^2 LL$	172.43	0.18	0.22	0.28

Theory Issues for $pp \rightarrow t\bar{t}X$

- jet observable $\star \star$
- suitable top mass for jets \star
- initial state radiation
- final state radiation \star
- underlying event/MPI
- color reconnection \star
- beam remnant
- parton distributions
 - sum large logs $Q \gg m_t \gg \Gamma_t$ \bigstar

Can apply this to current measurements if we trust Pythia extrapolation for remaining items

Theory Issues for $pp \rightarrow t\bar{t}X$

- jet observable $\star \star$ Jet Mass in Jet of radius R
- suitable top mass for jets \star
- initial state radiation \star
- final state radiation \star
- underlying event/MPI
- color reconnection \star
- beam remnant 📩 Jet veto
- parton distributions 🛧 multiple channels
 - sum large logs $Q \gg m_t \gg \Gamma_t \quad \bigstar$

Better: factorization for pp

Note: no star here

BUT control of underlying event is model dependent.

> Simple one parameter function F does give a reasonable model which reproduces Pythia

> > (IS, Tackmann, Waalewijn 2015)

Issue is that UE / MPI is significant:

Jet Substructure Interlude:

- key tools for: grooming jets
 - tagging subjets
- eg. W/Z tagging in 2016

Soft Drop

Larkoski, Marzani, Soyez, Thaler

Trimming

Krohn, Thaler, Wang

N-subjettiness

Thaler, van Tilburg (see also Stewart, Tackmann, Waalewijn) D_2

Larkoski, Moult, Neill

More scales:

Collinear Subjets

Bauer, Tackmann, Walsh, Zuberi 2012

also used for:

Multiple Measurements: Pro Sum Logs of Jet Radius, In(R):

Procura, Waalewijn, Zeune 2014

See Chris Lee's talk

More scales: Soft Subjet

Larkoski, Moult, Neill

Factorization theorems for both collinear and soft subjects were use for for their calculation of D_2

Larkoski, Marzani, Soyez, Thaler 2014

Grooms soft radiation from the jet

$$\frac{\min(p_{Ti}, p_{Tj})}{p_{Ti} + p_{Tj}} > z_{\text{cut}} \left(\frac{\Delta R_{ij}}{R_0}\right)^{\beta}$$

$$z > z_{\rm cut} \; \theta^{\beta}$$

two grooming parameters

Calculating Mass?

Larkoski, Marzani, Soyez, Thaler 2014

Pert. QCD at \simeq NLL

Soft Drop Factorization

Frye, Larkoski, Schwartz, Yan 2016

isolates measurement achieve NNLL precision

Top Jet Mass with Soft Drop $pp \to t\bar{t}$

A. Hoang, S. Mantry, A. Pathak, IS (to appear)

 $p_T \gg m_t \gg \Gamma_t > \Lambda_{\rm QCD}$

Boosted Tops $p_T \gg m_t$

Fat Jets

retain top decay products

- $\hat{s} \sim \Gamma_t$ for measurement of jet-mass m_J Sensitivity $\hat{s} = \frac{m_J^2 - m_t^2}{m_t}$ peak region
- $z_{
 m cut},eta$ Grooming

 $\mathcal{T}^{ ext{cut}}$ or $p_T^{ ext{cut}}$ Jet Veto

(Perturbative and Nonperturbative effects give $\Gamma > \Gamma_t$)

Can only apply a "light soft drop" for tops:

Factorization with Soft Drop on one jet:

$$\frac{d^{2}\sigma}{dM_{J}^{2}d\mathcal{T}^{\mathrm{cut}}} = \mathrm{tr}\Big[\hat{H}_{Qm}\hat{S}(\mathcal{T}^{\mathrm{cut}},Qz_{\mathrm{cut}},\beta,\ldots)\otimes F\Big]\otimes J_{B}\otimes\mathcal{I}\mathcal{I}\otimes ff$$
$$\times \left\{\int d\ell dk\,J_{B}\Big(\hat{s}_{t}-\frac{Q\ell}{m},\Gamma_{t},\delta m\Big)S_{C}\Big[\ell-\Big(\frac{k^{2+\beta}}{2^{\beta}Qz_{\mathrm{cut}}}\Big)^{\frac{1}{1+\beta}},Qz_{\mathrm{cut}},\beta\Big]F_{C}(k)\right\}$$

Pythia Tests

z_{cut} dependence

Jet Radius Dependence

residual dependence ~ 200 MeV (this pT)

Beam Cut Dependence

Pythia (Hadronic e+e-) versus (Hadronic+MPI pp)

e+e- comparison with pp: MPI and Hadronization effects (All curves with SoftDrop)

Pythia vs. Factorization

Which M_J Variable?

Pythia vs. Factorization with SoftDrop

includes: Hadronization+MPI

input mass in Pythia =173.1 GeV

Pythia vs. Factorization with SoftDrop

includes: Hadronization+MPI

input mass in Pythia =173.1 GeV

Pythia vs. Factorization with SoftDrop

includes: Hadronization+MPI

input mass in Pythia =173.1 GeV

Adding NLL uncertainty bands

Looks very promising.

But do note that this was high pT.

Pythia: curves do not change for lower pT with R=1

Not yet clear whether lower pT values can be predicted with SoftDrop.

no SoftDrop Pythia vs. Factorization

two reasonable fits with quite different masses

- Largest uncertainty in the top mass is "what mass is it?"
- Factorization provides answers with short distance m_t parameters
- Can Calibrate MC to determine relation: $m_t^{
 m MC} = m_t + \dots$
- Discussed promising new method in pp to measure Top Quark Mass

Future Directions

- More pT bins, NNLL, fits , combine SoftDrop & no SoftDrop, ...
- pp Monte Carlo calibration