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Top Mass Measurements at the LHC•

Factorization for 

• Factorization for e+e� � tt̄

• Top Mass Calibration for Monte Carlo Generators

pp� tt̄ with & without Jet grooming

• Predictions for LHC top mass measurements with SoftDrop
[A.Hoang, S.Mantry, A.Pathak, IS  (soon)] 

Mpeak
t = mt + (nonperturbative e�ects) + (perturbative e�ects)

[Butenschoen, Dehnadi, Hoang, Mateu, Preisser, IS  arXiv:1608.01318] 
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LHC & Tevatron Top Mass Measurements

Use Direct Reconstruction to obtain sensitivity:

CMS: mMC
t = 172.44± 0.49 ATLAS: mMC

t = 172.84± 0.70

Determine best fit value of Monte Carlo top-mass parameter:
Use Monte Carlo Templates
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What is          ?mMC
t

• Natural to think it is the pole mass, but its not.

Pole Mass has an infrared renormalon: 

mMC
t

Factorial growth in pert. series:

Due to the shower cutoff,           does not.

Ambiguity: �mpole
t � �QCD

(2�0)n n!�n+1
s

Pole Mass involves virtual integration over all momenta. 

MC has shower cutoff which restricts real radiation.  Due to 
unitarity, this cutoff also affects virtual radiation &           defn.mMC

t

A.Hoang, IS  arXiv:0808.0222
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What is          ?mMC
t

• It is not the       mass.MS

mt�s � �t � 1.4 GeV

Not compatible with Breit-Wigner in Monte Carlo.
1

� q2�m2
t

mt

�2 + �2
t

A.Hoang, IS  arXiv:0808.0222
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What is          ?mMC
t

•

A.Hoang, IS  arXiv:0808.0222

It is most like a short distance mass with cutoff  R � 1 GeV

mMSR
t (R � 1GeV) � mMC

tMSR mass:
definition uncertainty � 0.5 GeVvary R:

Hoang, Jain, Scimemi, IS  arXiv:0803.4214
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Extracting a Short Distance Top Mass at the LHC

To improve on the current experimental measurements:

• must use a kinematically sensitive LHC observable

• theoretically tractable (= factorization at Hadron level), 
to obtain a measurement in a precise mass scheme
defined at Lagrangian level.

• control contamination (ISR, Underlying Event, …)

First simplification:

• boosted top quarks,  Q = 2pT � mt

enables us to be inclusive over decay products



Theory Issues for
•

• suitable top mass for jets

•

•

•

•

•

initial state radiation

final state radiation

jet observable 

underlying event/MPI

color reconnection

parton distributions•

• sum large logs Q� mt � �t

pp� tt̄X

beam remnant

Production

ΛQCD

�t � 1.4 GeV

Q = 2pT � 1 TeV

mt = 173GeV
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underlying event/MPI
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beam remnant

parton distributions•
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Hemisphere Invariant Masses

Measure what observable?
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Answer

Hard Functions

Evolution and decay of top 
quark close to mass shell

Perturbative Cross talk

(boosted HQET) 
Jet Functions Soft 

Function

Fleming, Hoang, Mantry, ISFactorization: hep-ph/0703207
hep-ph/0711.2079

control over mass scheme

QCD

SCET

HQET

�
d2�

dM2
t dM2

t̄

�

hemi

= �0HQ(Q,µm)Hm

�
m,

Q

m
,µm, µ

�

�JB

�
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Q�

m
,�, �m,µ

�
JB

�
ŝt̄�

Q��

m
,�, �m,µ

�
Shemi(��k, ���k�, µ)F (k, k�)

Hadronization



Answer

Fleming, Hoang, Mantry, IS hep-ph/0703207
hep-ph/0711.2079
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extract
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Short distance mt can (in principle) be
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Factorization:



Jet Function Results up to            & NNLL:
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well as of the log-resummation, including the perturbative convergence and µ-dependence of B as a function of ŝ,
and in particular the stability of its peak position which is important for a top-mass measurement. At tree-level
B(ŝ, δm, µ) = δ(ŝ) and we see from Eq. (12) that B(ŝ, δm,Γt, µ) is simply a Breit-Wigner centered at ŝ = 0 with a
width Γt. Beyond tree-level the jet function becomes dependent on µ and on the choice of mass-scheme through δm.

For the cross-section d2σ/dM2
t dM2

t̄ in Eq. (2) it has been proven that at any order in perturbation theory, the
only large logs that effect the shape of the invariant mass distribution are those due to the resummation in the
heavy-quark jet function [19].4 Furthermore these large logs only exist between scales µΓ ∼ Γ ≡ Γt + QΛQCD/m and
µΛ

>∼ ΛQCD + mΓt/Q. The remaining large logs only modify the cross-sections normalization. The expression which
resums all logs between the scales µQ ≃ Q ≫ µm ≃ m ≫ µΓ ≃ Γ ≫ µΛ

>∼ ΛQCD is

d2σ

dMtdMt̄
= 4σ0MtMt̄ HQ(Q, µQ)UHQ(Q, µQ, µm)Hm(mJ , µm)UHm(Q/mJ , µm, µΛ) (73)

×
∫ +∞

−∞
dℓ+ dℓ−B+

(

ŝt −
Qℓ+

mJ
, δmJ ,Γt, µΛ, µΓ

)

B−

(

ŝt̄ −
Qℓ−

mJ
, δmJ ,Γt, µΛ, µΓ

)

S
(

ℓ+, ℓ−, µΛ, δ, ∆̄(µΛ)
)

,

where we have defined the resummed jet function as

B(ŝ, δmJ ,Γt, µΛ, µΓ) ≡
∫

dŝ′ UB(ŝ − ŝ′, µΛ, µΓ) B(ŝ′, δmJ ,Γt, µΓ)

=

∫

dŝ′ dŝ′′ UB(ŝ − ŝ′, µΛ, µΓ) B(ŝ′ − ŝ′′, δmJ , µΓ)
Γt

π(ŝ′′ 2 + Γ2
t )

. (74)

In Eqs. (73,74) large logs are resummed by the evolution factors UHQ , UHm , and UB, and of these, the first two only
affect the overall normalization. Since the scales µΓ and µΛ differ by a factor of Q/m it is necessary to sum the large
logs between these scales. Recall that Eq. (73) is valid for Q ≫ m, which is mandatory for the top quark and antitop
quarks to decay to well separated jets. The numerical importance of this particular resummation has already been
demonstrated at NLL order in Ref. [19].

In the following we study the resummed jet function B(ŝ, δm,Γt, µΛ, µΓ) and its dependence on ŝ and µΓ. In
particular the µΓ dependence cancels out order-by-order in renormalization group improved perturbation theory, and
thus the residual µΓ dependence provides a method for estimating the effect of higher order corrections to the jet
function. This µΓ dependence cancels order-by-order between the evolutor UB(ŝ − ŝ′, µΛ, µΓ) and the fixed-order jet
function matrix element that gives B(ŝ′− ŝ′′, δm, µΓ) in Eq. (74). On the other hand, the dependence of the resummed
jet function on µΛ cancels out only in the complete cross-section, where there is additional dependence on µΛ in both
the evolution function UHm and the soft-function S. The analysis of the invariant mass dependence of the full NNLL
cross-section requires constructing a consistent model for the soft-function at two-loop order, since S contains both
perturbative and non-perturbative pieces. The procedure in Ref. [22] can be used to carry out this analysis, but we
leave the study of the full cross-section to a future publication. Here we focus on the resummed jet function.

Following the strategy in appendix E of Ref. [19] we can obtain analytic results for the NNLL jet function even in
the presence of the width. At NNLL order we find

mB(ŝ, δm,Γt, µΛ, µΓ) = G0 +
CF αs(µΓ)

π

[

G2 − G1 +
(

1 +
5π2

24

)

G0

]

−
2αs(µΓ)

π
δm1(µΓ) (G0)

′

+
α2

s(µΓ)

π2

{

C2
F

[

1

2
G4 − G3 +

(3

2
+

13π2

24

)

G2 −
(

1 +
13π2

24
− 4ζ3

)

G1 +
(1

2
+

7π2

24
+

53π4

640
− 2ζ3

)

G0

]

+ CF CA

[

(1

3
−

π2

12

)

G2 −
( 5

18
−

π2

12
−

5ζ3

4

)

G1 +
(

−
11

54
+

5π2

48
−

19π4

960
−

5ζ3

8

)

G0

]

+ CF β0

[

−
1

6
G3 +

2

3
G2 −

(47

36
+

π2

12

)

G1 +
(281

216
+

23π2

192
−

17ζ3

48

)

G0

]

}

−
2α2

s(µΓ)

π2

{

δm2 (G0)
′ − (δm1)

2 (G0)
′′ + δm1 CF

[

(G2)
′ − (G1)

′ +
(

1 +
5π2

24

)

(G0)
′

]

}

. (75)

4 In principle both the logs in the jet function and in the soft-function can modify the invariant mass distribution. However due to the
consistency conditions discussed in Ref. [19] it is always possible to exchange a summation of large logs in the soft function in favor of
large logs in the jet function and in the hard function normalization factors.
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FIG. 3: The jet function, mB(ŝ, δm,Γt, µ) versus Mt, where ŝ = (M2
t −m2)/m and Γt = 1.43 GeV. The left panel shows results

in the pole-mass scheme and the right panel shows results in the jet-mass scheme. The black dotted curve is the tree-level
Breit-Wigner, the green short-dashed curves are LL results, blue long-dashed curves are NLL, and the solid red curves are at
NNLL order. For each of the LL, NLL, and NNLL results we show three curves with µΓ = 3.3, 5.0, 7.5 GeV respectively. Other
parameters are discussed in the text.
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FIG. 4: Peak position Mpeak
t of the jet function versus µΓ. Short-dashed results are at LL order, long-dashed are at NLL

order, and solid are at NNLL order. Results are labeled for the pole mass-scheme (blue) and jet mass-scheme (red).

residual µΓ dependence is smaller in the jet-scheme than in the pole-scheme. The numerical size of the residual µΓ

scale dependence varies region by region. In the pole-mass scheme the scale dependence in the slope before the peak
is ∼ 17% at NLL and ∼ 14% at NNLL, while the maximum variation near the peak is 23% at NLL and 17% at
NNLL, and then in the tail region well above the peak it is ∼ 19% at NLL and ∼ 13% at NNLL. Hence, in the pole
scheme including the NNLL results does not significantly decrease the µΓ dependence. In the jet-mass scheme the
scale dependence in the slope before the peak is ∼ 6% at NLL and ∼ 2% at NNLL, while the maximum variation
near the peak is 14% at NLL and 7% at NNLL, and then in the tail above the peak it is ∼ 12% at NLL and ∼ 5%
at NNLL. Thus, in the jet-mass scheme the µΓ dependence is reduced by a factor of two or more. The same level of
improvement is observed for different values of the scheme parameter R than the value used in our analysis.

In Fig. 4 we plot the peak position Mpeak
t of the jet function curves, versus µΓ. This figure displays the convergence

and µΓ dependence of the jet function peak position in more detail than Fig. 3. The stability of the jet function
peak has a direct influence on the peak of the cross-section, and both are very sensitive to the value of the short-
distance top-mass. Hence the peak-position is important to gauge the effect of perturbative corrections for the mass
measurement. We use a wider range for µΓ than that of the curves in Fig. 3, but note that results for µΓ ≤ 3 GeV
upset the hierarchy µΓ/µΛ ≃ 5 and hence can be safely ignored. In the pole-mass scheme we observe that there is
limited sign of convergence for the peak position, although the shifts with µΓ = 5 GeV at each order are still relatively
small being ≃ 230 MeV from LL to NLL order and ≃ 120 MeV from NLL to NNLL order. The lack of convergence
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is ∼ 17% at NLL and ∼ 14% at NNLL, while the maximum variation near the peak is 23% at NLL and 17% at
NNLL, and then in the tail region well above the peak it is ∼ 19% at NLL and ∼ 13% at NNLL. Hence, in the pole
scheme including the NNLL results does not significantly decrease the µΓ dependence. In the jet-mass scheme the
scale dependence in the slope before the peak is ∼ 6% at NLL and ∼ 2% at NNLL, while the maximum variation
near the peak is 14% at NLL and 7% at NNLL, and then in the tail above the peak it is ∼ 12% at NLL and ∼ 5%
at NNLL. Thus, in the jet-mass scheme the µΓ dependence is reduced by a factor of two or more. The same level of
improvement is observed for different values of the scheme parameter R than the value used in our analysis.

In Fig. 4 we plot the peak position Mpeak
t of the jet function curves, versus µΓ. This figure displays the convergence

and µΓ dependence of the jet function peak position in more detail than Fig. 3. The stability of the jet function
peak has a direct influence on the peak of the cross-section, and both are very sensitive to the value of the short-
distance top-mass. Hence the peak-position is important to gauge the effect of perturbative corrections for the mass
measurement. We use a wider range for µΓ than that of the curves in Fig. 3, but note that results for µΓ ≤ 3 GeV
upset the hierarchy µΓ/µΛ ≃ 5 and hence can be safely ignored. In the pole-mass scheme we observe that there is
limited sign of convergence for the peak position, although the shifts with µΓ = 5 GeV at each order are still relatively
small being ≃ 230 MeV from LL to NLL order and ≃ 120 MeV from NLL to NNLL order. The lack of convergence

O(�2
s)

Jain, Scimemi, I.S.  arXiv:0801.0743
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well as of the log-resummation, including the perturbative convergence and µ-dependence of B as a function of ŝ,
and in particular the stability of its peak position which is important for a top-mass measurement. At tree-level
B(ŝ, δm, µ) = δ(ŝ) and we see from Eq. (12) that B(ŝ, δm,Γt, µ) is simply a Breit-Wigner centered at ŝ = 0 with a
width Γt. Beyond tree-level the jet function becomes dependent on µ and on the choice of mass-scheme through δm.

For the cross-section d2σ/dM2
t dM2

t̄ in Eq. (2) it has been proven that at any order in perturbation theory, the
only large logs that effect the shape of the invariant mass distribution are those due to the resummation in the
heavy-quark jet function [19].4 Furthermore these large logs only exist between scales µΓ ∼ Γ ≡ Γt + QΛQCD/m and
µΛ

>∼ ΛQCD + mΓt/Q. The remaining large logs only modify the cross-sections normalization. The expression which
resums all logs between the scales µQ ≃ Q ≫ µm ≃ m ≫ µΓ ≃ Γ ≫ µΛ

>∼ ΛQCD is

d2σ

dMtdMt̄
= 4σ0MtMt̄ HQ(Q, µQ)UHQ(Q, µQ, µm)Hm(mJ , µm)UHm(Q/mJ , µm, µΛ) (73)

×
∫ +∞

−∞
dℓ+ dℓ−B+

(

ŝt −
Qℓ+

mJ
, δmJ ,Γt, µΛ, µΓ

)

B−

(

ŝt̄ −
Qℓ−

mJ
, δmJ ,Γt, µΛ, µΓ

)

S
(

ℓ+, ℓ−, µΛ, δ, ∆̄(µΛ)
)

,

where we have defined the resummed jet function as

B(ŝ, δmJ ,Γt, µΛ, µΓ) ≡
∫

dŝ′ UB(ŝ − ŝ′, µΛ, µΓ) B(ŝ′, δmJ ,Γt, µΓ)

=

∫

dŝ′ dŝ′′ UB(ŝ − ŝ′, µΛ, µΓ) B(ŝ′ − ŝ′′, δmJ , µΓ)
Γt

π(ŝ′′ 2 + Γ2
t )

. (74)

In Eqs. (73,74) large logs are resummed by the evolution factors UHQ , UHm , and UB, and of these, the first two only
affect the overall normalization. Since the scales µΓ and µΛ differ by a factor of Q/m it is necessary to sum the large
logs between these scales. Recall that Eq. (73) is valid for Q ≫ m, which is mandatory for the top quark and antitop
quarks to decay to well separated jets. The numerical importance of this particular resummation has already been
demonstrated at NLL order in Ref. [19].

In the following we study the resummed jet function B(ŝ, δm,Γt, µΛ, µΓ) and its dependence on ŝ and µΓ. In
particular the µΓ dependence cancels out order-by-order in renormalization group improved perturbation theory, and
thus the residual µΓ dependence provides a method for estimating the effect of higher order corrections to the jet
function. This µΓ dependence cancels order-by-order between the evolutor UB(ŝ − ŝ′, µΛ, µΓ) and the fixed-order jet
function matrix element that gives B(ŝ′− ŝ′′, δm, µΓ) in Eq. (74). On the other hand, the dependence of the resummed
jet function on µΛ cancels out only in the complete cross-section, where there is additional dependence on µΛ in both
the evolution function UHm and the soft-function S. The analysis of the invariant mass dependence of the full NNLL
cross-section requires constructing a consistent model for the soft-function at two-loop order, since S contains both
perturbative and non-perturbative pieces. The procedure in Ref. [22] can be used to carry out this analysis, but we
leave the study of the full cross-section to a future publication. Here we focus on the resummed jet function.

Following the strategy in appendix E of Ref. [19] we can obtain analytic results for the NNLL jet function even in
the presence of the width. At NNLL order we find

mB(ŝ, δm,Γt, µΛ, µΓ) = G0 +
CF αs(µΓ)

π

[

G2 − G1 +
(

1 +
5π2

24

)

G0

]

−
2αs(µΓ)

π
δm1(µΓ) (G0)

′

+
α2

s(µΓ)

π2

{

C2
F

[

1

2
G4 − G3 +

(3

2
+

13π2

24

)

G2 −
(

1 +
13π2

24
− 4ζ3

)

G1 +
(1

2
+

7π2

24
+

53π4

640
− 2ζ3

)

G0

]

+ CF CA

[

(1

3
−

π2

12

)

G2 −
( 5

18
−

π2

12
−

5ζ3

4

)

G1 +
(

−
11
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+

5π2

48
−

19π4
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−

5ζ3

8

)

G0

]
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[

−
1

6
G3 +

2

3
G2 −

(47

36
+

π2

12

)

G1 +
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216
+

23π2

192
−

17ζ3

48

)

G0

]

}

−
2α2

s(µΓ)

π2

{

δm2 (G0)
′ − (δm1)

2 (G0)
′′ + δm1 CF

[

(G2)
′ − (G1)

′ +
(

1 +
5π2

24

)

(G0)
′

]

}

. (75)

4 In principle both the logs in the jet function and in the soft-function can modify the invariant mass distribution. However due to the
consistency conditions discussed in Ref. [19] it is always possible to exchange a summation of large logs in the soft function in favor of
large logs in the jet function and in the hard function normalization factors.
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Top Mass Calibration of Monte Carlo
[Butenschoen, Dehnadi, Hoang, Mateu, Preisser, IS  arXiv:1608.01318] 

Calibrate the         parameter in Monte Carlo against 
  Hadron level theory predictions with definite        parameter

mMC
t

mt

• NNLL + NLO + nonsingular + hadronization + renormalon subt.

• VFNS for final state jets with massive quarks

• MSR mass, Soft Gap Scheme, and R-evolution
[Hoang, Kluth 2008]
[Hoang, Jain, Scimemi, Stewart 2010]

[Gritschacher, Hoang, Jemos, Mateu, Pietrulewicz 2013, 2014]

[Butenschon, Dehnadi, Hoang, Mateu (to appear)]

• 2-jettiness variable:

theory:e+e� � tt̄
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Fit Procedure:

•

•

Fix mMC
t . Generate MC data with Q = 700, 800, . . . , 1300, 1400 GeV.

For given µi , Fit theory in peak region to determine �i and mt

• Repeat 500 times for di�erent µi to obtain perturbative uncertainty
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Results:
• mMC

t di�ers from mpole
t by

0.9 GeV (NNLL) or 0.6 GeV (NLL)

• mMC
t compatible with

mMSR
t (R = 1GeV)



Theory Issues for
•

• suitable top mass for jets

•

•

•

•

•

initial state radiation

final state radiation

jet observable 

underlying event/MPI

color reconnection

beam remnant

parton distributions•

• sum large logs Q� mt � �t

pp� tt̄X

Can apply this to current
measurements if we 
trust Pythia extrapolation 
for remaining items

�

�

��

�

�



Theory Issues for
•

• suitable top mass for jets

•

•

•

•

•

initial state radiation

final state radiation

jet observable 

underlying event/MPI

color reconnection

beam remnant

parton distributions•

• sum large logs Q� mt � �t

pp� tt̄X

Better:  factorization 
              for pp

� �
�

�
�

�

�
�

�  Jet veto

Jet Mass in Jet of radius R

Note:  no star here

multiple channels



Can be extended to pp 
(using N-jettiness)

•
QCD

SCET

HQET

pp� tt̄ A. Hoang,  S. Mantry,  A. Pathak, IS

same jet functions!

BUT control of underlying event
 is model dependent.

•

Simple one parameter function F 
does give a reasonable model

which reproduces Pythia

(IS, Tackmann, Waalewijn 2015)

d2�

dM2
J1dM2

J2dT cut
= tr

�
ĤQmŜ(T cut, R, . . .)�F

�
�JB � JB�II � ff

(Stewart, Tackmann, Waalewijn)
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Issue is that UE / MPI is significant:

input mass in
Pythia mt=173.1 GeV

1 GeV shift
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 key tools for:                       

Jet Substructure Interlude: 

tagging subjets 
grooming jets •

•

Soft Drop Trimming

N-subjettiness D2

Larkoski, Marzani, Soyez, Thaler Krohn, Thaler, Wang

Thaler, van Tilburg
(see also Stewart, Tackmann, Waalewijn)

Larkoski, Moult, Neill

eg.  W/Z tagging in 2016 
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virtuality

Bauer,  Tackmann, Walsh, Zuberi 2012 

More scales:

Multiple Measurements: Procura, Waalewijn, Zeune 2014

Sum Logs of Jet Radius, ln(R): See Chris Lee’s talk

also used for:
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More scales:

virtuality
Larkoski, Moult, Neill

Factorization theorems for both collinear and soft subjects 
were use for for their calculation of  D2 
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Soft Drop Larkoski, Marzani, Soyez, Thaler 2014

Grooms soft radiation from the jet

z > zcut ��

two grooming parameters

min(pTi, pTj)
pTi + pTj

> zcut

��Rij

R0

��
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Larkoski, Marzani, Soyez, Thaler 2014

Pythia 8, partonic Pert. QCD at     NLL�
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Soft Drop Factorization Frye, Larkoski, Schwartz, Yan  2016

Adds:
Soft-Collinear 

function SC
d�

de2 . . .
= H(Q2)SG(zcut,�)

�
�
SC(e2, zcut,�)� J(e2)

�

isolates measurement
achieve NNLL precision
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Top Jet Mass with Soft Drop

A. Hoang,  S. Mantry,  A. Pathak, IS (to appear)

pp� tt̄
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• Fat Jets

• Boosted Tops pT � mt retain top decay products

• Sensitivity ŝ � �t for measurement of jet-mass

• Grooming zcut,�

ŝ =
m2

J �m2
t

mt

mJ

Jet Veto T cut•
172 174 176 178 180

0.002

0.004

0.006

0.008

0.010

0.012 peak region

tail 
region

ŝ� �

ŝ � �

R� mt

pT

� > �t(Perturbative and Nonperturbative effects give              )

pT � mt � �t > �QCD

pcut
Tor
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Modes:
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Modes:
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Ensure soft drop 
does not touch      

Can only apply  a “light soft drop” for tops:

Ensure soft drop removes global 
soft radiation from measurement      

“light grooming here”

�t

m

� Q

2m

��
� zcut �

2m�t

Q2

d2�

dM2
JdT cut

= tr
�
ĤQmŜ(T cut, Qzcut,�, . . .)�F

�
�JB�II � ff

�
� �

d�dk JB

�
ŝt �

Q�

m
,�t, �m

�
SC

�
��

� k2+�

2�Qzcut

� 1
1+�

, Qzcut,�

�
FC(k)

�

JB

Factorization with Soft Drop on one jet:
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Pythia Tests
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zcut dependence

Transition for “light grooming” 
as predicted by factorization!
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Jet Radius 
Dependence

residual dependence
~ 200 MeV (this pT)
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Beam Cut 
Dependence
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Great!
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input mass in
Pythia =173.1 GeV

Only 0.19 GeV shift from MPI



38

Pythia  vs.  Factorization
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Which MJ Variable?
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Pythia vs. Factorization 
with SoftDrop

includes: 
  Hadronization+MPI

input mass in
Pythia =173.1 GeV
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Pythia vs. Factorization 
with SoftDrop

input mass in
Pythia =173.1 GeV

includes: 
  Hadronization+MPI
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Pythia vs. Factorization 
with SoftDrop

input mass in
Pythia =173.1 GeV

includes: 
  Hadronization+MPI
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Adding NLL uncertainty bands
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Looks very promising. 

But do note that this was high pT.   

Pythia:  curves do not change for lower pT with R=1

Not yet clear whether lower pT 
values can be predicted with 

SoftDrop.
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no SoftDrop

Pythia vs. 
Factorization

For Comparison:

two reasonable fits with 
quite different masses



Summary

Future Directions

•

Factorization provides answers with short distance        parameters

• More pT bins, NNLL, fits , combine SoftDrop & no SoftDrop, …

• pp Monte Carlo calibration

•

Largest uncertainty in the top mass is “what mass is it?”

Discussed promising new method in pp to measure Top Quark Mass •

mt

Can Calibrate MC to determine relation:   • mMC
t = mt + . . .


