

MCP Process Flow, Facilities, and Needs

Jeffrey Elam, Anil Mane Argonne National Laboratory Aileen O'Mahony Incom

LAPPD2 Microchannel Plate Godparent Review Argonne National Laboratory April 4, 2013

Questions

1) What is the flow of 8" plates?

- what it is now and what changes should be made?

2) What is the facilities status?

- electroding at SSL and Fermilab
- what's available for ALD process?
- do we share them with others? if yes, how does it affect us?
- quality control
- resistance measurements
- annealing ovens
- storage and handling
- clean room

3) What's needed?

- clean handling and minimized exposure to air (or dust)
- storage
- annealing
- electroding
- any additional diagnostics required at any step of the process

What is the Flow of 8" Plates?

What is the Facilities Status? - ALD systems for coating 8" MCPs

100 mm substrate chamber for R3 "tube reactor"

NOTES:

100 mm Chamber Qualification: ALD Al₂O₃

100 mm Chamber Qualification: ALD Al₂O₃

9

ALD of W-Al₂O₃ Composite Films

- Combine 2 ALD processes:
 - TMA/H₂O \rightarrow Al₂O₃ : insulator, ρ =10¹⁶ Ω cm
 - $\ WF_6/Si_2H_6 \ \rightarrow \ W \ : conductor, \ \rho=10^{-4} \ \Omega cm$

Tune resistivity with W/(W+Al₂O₃) cycle ratio

Chem1 on 33mm MCPs using Fixture from SSL

MCP's	R (Ohm)	Rho (Ohm cm)
13600-018	2.3e8	1.1e8
13600-019	2.5e8	1.2e8
13600-020	2.2e8	1.2e8

• Very good reproducibility

Silicon	Th(A)	n600	MSE
1	479	1.81	4.0
2	467	1.84	4.0
3	471	1.81	3.8
4	575	1.83	6.4
5	567	1.83	6.0
6	618	1.84	7.7

• Thicker downstream

• Th, n, MSE all correlated

Darker downstream and under MCPs

13600-297: 25% chem1, R=2.4e8

 $\mathsf{Flow} \rightarrow$

• Thickness gradient across all of the 33mm MCP (regardless of position in tray)

13600-297: 25% chem1, R=2.4e8 Crack in half:

- Apparently thickness gradient does not extend into pores since resistance of both thin and thick halves is the same
- Much better uniformity by rotating the fixture ½ way through the Chem1 coating
- No ALD optimization has been done yet!

Resistivity Summary for 65 MCPs Coated in R3

Resistance Distribution for 25% W Chem1 MCPs

Resistance Distribution for 25% W Chem1 MCPs

MgO Thickness Gradient in Beneq using Cross-Flow

"Before"

Chem1 on Actual MCP and Si after Hardware and Process Development

"After"

13600-003 – 12% W, rho=5e9 ohm cm

Resistance as dep=14.5 Mohm Resistance after 400C anneal = 25 Mohm

Air resistance 23M Ω , vacuum resistance 25M Ω

Central feature is typical illumination pre-re-electrode

X gain slices

8" MCPs from Beneq, Chem1 + AI_2O_3

	Argonne ID	MCP ID	R as deposited (MOhms)	comments
1	BSHWAL011	13600-003	14	Ossy tested, Matt
2	BSHWAL012	13600-002	13	Ossy tested, Matt
3	BSHWALO13	13600-007	0.3	TMA ran out
4	BSHWAL014	13600-051	29	Ossy
5	BSHWALO15	13600-046	14	Ossy
6	BSHWALO16	13600-077	34	Ossy
7	BSHWAL017	13600-069	24	Ready to ship
8	BSHWALO18	13600-053	19	Ready to ship
9	BSHWALO19	13600-068	13	Ready to ship
10	BSHWALO20	14020-013	TBD	In Beneq

What is the Facilities Status? - Annealing Ovens

	Beneq	R4 tube furnace	Elnik	Pizza oven + insert
Pros	 8" substrates Located in ALD lab Located in clean room 	Always availableLocated in ALD labs	• 8" substrates	 8" substrates Located in ALD labs Located in clean room No delamination dust No interruption of ALD
Cons	 Thermal cycling creates dust Interrupts ALD 	46mm max substratesNot in clean room	Located in 380Not in clean room	• ???
Comments	• UHP N2	• UHP N2	• HV	• UHP N2

Resistance Change From Anneal, Chem1, 15-30% W

Fluorine Migration During Anneal of Chem1 + Al₂O₃

- F migration might increase resistance of Chem1 coating
- But F also migrates into MgO why then does Chem1 resistance decrease?

Resistance Change From Anneal, Chem 2, 9-10% Mo

What's Needed?

- Annealing Studies

- Is the annealing necessary?
- What are the effects of annealing temperature, time, N₂ versus UHV?
- During the anneal, what happens to the:
 - Resistive coating (crystallization, F diffusion, chemistry)?
 - Emissive coating (crystallization, F diffusion, chemistry)?
 - Glass substrate (alkali, lead diffusion into ALD, ALD diffusion into glass)?
- Can the resistance changes be controlled/eliminated using diffusion barrier layers?

What is the Facilities Status? - Current MCP Process Flow:

Anneal

Problems:

- Dust
- Availability of personnel
- Availability of equipment

What's Needed?

- Larger clean-room, consolidation of equipment, dedicated ALD system

What's Needed?

- More People

Production

- Aileen O'Mahony
- Tony Fracaro
 - ES technical staff, 10+ years experience in lab management
 - Manage ALD labs equipment, supplies, ES&H, design and build
 - o Started April 1
- Wade Eberle
 - o BA Chem and Phys 2009
 - Hire as temp fabricate and test MCPs
 - Start date ~ April 22

Science

• Postdoc