IRS3B & Other ASICs

Gary S. Varner University of Hawai'i at Manoa

6-APR-2013 == godparent Review at ANL

A reminder of motivation

Portfolio of options, ever expanding

ASIC	Amplification?	# chan Depth/	chan Sampling	[GSa/s] Ve	ndor Size [nm]	Ext ADC?
------	-----------------------	---------------	---------------	------------	----------------	----------

DRS4	no.	8	1024	1-5	IBM	250	yes.
SAM	no.	2	1024	1-3	AMS	350	yes.
IRS2/3	no.	8	32536	1-4	TSMC	250	no.
BLAB3A	yes.	8	32536	1-4	TSMC	250	no.
TARGET	no.	16	4192	1-2.5	TSMC	250	no.
TARGET2	yes.	16	16384	1-2.5	TSMC	250	no.
TARGET3	no.	16	16384	1-2.5	TSMC	250	no.
PSEC3	no.	4	256	1-16	IBM	130	no.
PSEC4	no.	6	256	1-16	IBM	130	no.

→ Success of PSEC: proof-of-concept of moving toward smaller feature sizes.

• Next DRS plans to use 110nm; next SAM plans to use 180 nm.

Tile Assembly Readout System Overview

Respin Analog card only for different ASIC

> A variety of data collection configurations possible

Demonstrate timing distribution @ ps level between modules

- Mechanically different configuration
- Leverage Belle II iTOP HW/FW development effort
- Single p.e. TTS limitation

IRS3B ASIC Specifications

32768	samples/chan (>5.2µs trig latency)
8	channels/BLAB3 ASIC
8	Trigger channels
~9	bits resolution (12[10]-bits logging)
64	samples convert window (~16ns)
4	GSa/s
1	word (RAM) chan, sample readout
1+n*0.02	μ s to read n samples (of same 64)
30	kHz sustained readout (multibuffer)

• Time alignment critical

- Synchronize sampling to accelerator RF clock (Belle TOF)
- >5µs buffer depth a must for trigger, since single photon rates high

Multi-stage transfer (single channel)

• Sampling: 128 (2x 64) separate transfer lanes

Recording in one set 64, transferring other ("ping-pong")

- Concurrent Writing/Reading
- Only 128 timing constants
- Storage: $64 \times 512 (512 = 8 * 64)$
 - Wilkinson (in parallel 8 chan): 64 conv/channel

IRS3B in system

Non-uniform timebase

- Inverter chain has transistor variations
 - $\rightarrow \Delta t_i$ between samples differ
 - → "Fixed pattern aperture jitter"
- "Differential temporal nonlinearity" $TD_i = \Delta t_i - \Delta t_{nominal}$
- "Integral temporal nonlinearity" $TI_i = \Sigma \Delta t_i - i \cdot \Delta t_{nominal}$
- "Random aperture jitter" = variation of Δt_i between measurements

dT Spread

Non-uniform sampling timebase

LAB4B: "fix timebase in hardware"

Even ASIC-less architectures

- Going back to 2007, can use FPGAs
 - High-speed comparator
 - TDC
 - TOT for rough amplitude information
 - <100ps timing possible</p>
- Low cost, high density, and need FPGA for data collection anyway
- If need DACs for thresholding, for large systems ASICs probably still preferred. Though not always.

IRS3B or ASICs Summary

- A number of options now available can be tailored to specific needs:
 - <= 1 ps timing (PSEC family)</p>
 - High channel count
 - Long (10's of us) trigger latency
 - High trigger rate/througput
- Front-end and common back-end support a serious issue
- Reality of "large" systems is that a custom readout likely to be developed (gain, optimal information extraction, in-house control, etc)

Backup

Readout Electronics

- Building on experience from existing devices & readouts.
 - Readout based on waveform sampling
 - Requirements of the readout vary significantly by application
 4x4 anode "1 inch"

