What We Learned from **PSEC4**

Eric Oberla

LAPPD2 Electronics Review

6-April-2013

1) Design: PSEC4

10-15 Gsa/s Switched capacitor array sampling: 'analog down-conversion'

[GHz sampling → 10-100 MHz readout: useful in most 'triggered event' applications]

Designed to sample & digitize fast pulses (MCPs):

To switched capacitor array - sample & hold

*PSEC-3 timing shown (roughly the same), though PSEC-4 can run readout 2x faster – highly serial...

Sampling

TRIGGER! Sampling

www.www.www

Digitization

1) Design: circuit building blocks

PSEC-4 ASIC (University of Chicago)

10-15 GSa/a Waveform Sampling ASIC

Designed as part of the Large-Area Picosecond Photo-Detector (LAPPD) project

	ACTUAL PERFORMANCE
Sampling Rate	2.5-15 GSa/s
# Channels	6
Sampling Depth	256 points (17-100 ns) per channel
Input Noise	<1 mV RMS
Analog Bandwidth	1.5 GHz (f _{3dB})
ADC conversion (ramp-compare)	Up to 12 bit (10 ENOB) clocked @ 1.6 GHz
Dynamic Range	0.1-1.1 V
Readout Latency	2 μs (min) – 16 μs (max)

6-channel PSEC-4 evaluation board in use at LAPPD micro-channel plate (MCP) test stand

Dual-end readout of LAPPD 20x20 cm² MCP w/ PSEC-4 @ 10 GSa/s

- -- left anode strip
- -- right anode strip

PSEC-4 ASIC (University of Chicago)

Digital Card

10-15 GSa/a Waveform Sampling ASIC

Designed as part of the Large-Area Picosecond Photo-Detector (LAPPD) project

Evaluation board firmware, software, and generic analysis code up-to-date on LAPPD trac repository

🗲 🕙 https://lappd-trac.uchicago.edu/wiki

wiki: WikiStar

Useful links:

Electronics

PHOTO-DETECTORS

Main ⇒ collaboration website. Also, we really like ⇒ blogs.

Analog Card

We've picked a downstream Instruction Set. [needs updating]

Current agendas for electronics group meetings. Archived agendas (UH IDLAB).

Agendas for electronics group meetings

Glass-package readout/data flow:

Electronics blog. [defunct?]

12

1) Design education

- Simulation-driven integrated circuit design
 - Confidence in layout extracted simulations and final chip design
 - Verification with several 0.13 μm chips:
 - PSEC3, CHAMP, PSEC4...
- 0.13 μm CMOS
 - Leakage not really a big issue
 - Maximize dynamic range over limited 1.2 V core voltage
 - Analog Bandwidth limited by input capacitance

2) Performance

2) Performance: Analog BW Modeling

PSEC4 S21 versus frequency 3 Bond-wire Bump-bond R cell series R_bond_5ohm Relative amplitude [dB] Model parameters: 7nH bond wire L 2400fF C_total · C store "40fF total C board C_pad_signal C_switch_ds R term • R_on ~ 1kΩ 1pF 50ohm -7 R cell ret -9 R_bond_5ohm 0.1 Frequency [GHz] C bias C pad return 1600 C parasitic 1microF 1pF 40fF gnd 1400 1200 Chip RC-only input line 1000 PSEC-3 actual PSEC-3 Spice model ----x---simulations match PSEC-4 Spice model —— 800 observed PSEC-3/4 600 bandwidths 400 200 15

20

40

60

Cell Number

80

100

120

2) Performance: table of measured results

Table 1: PSEC4 architecture parameters and measured performance results.

Parameter	Value	Comment
Channels	6	die size constraint
Sampling Rate	4-15 GSa/s	servo-locked on-chip
Samples/channel	256	25 ns recording window at 10.24 GSa/s
Analog Bandwidth	1.6 GHz	~2.5 dB distortion at 1.3 GHz
Crosstalk	7%	max. over bandwidth
	<1%	typical for signals <800 MHz
Noise	$700 \mu V$	RMS (typical). RF-shielded enclosure.
Effective ADC Resolution	10.5 bits	12 bits logged
ADC time	$4 \mu s$	max. 12 bits logged at 1 GHz clock speed
	250 ns	min. 8-bits logged at 1 GHz
ADC clock speed	1.4 GHz	max.
Dynamic Range	1 V	after linearity correction
Readout time	$0.8n~\mu s$	n is number of 64-cell blocks to read ($n = 24$ for entire chip)
Sustained Trigger Rate	50 kHz	max. per chip. Limited by $[ADC time + Readout time]^{-1}$
Power Consumption	100 mW	max. average power
Core Voltage	1.2 V	$0.13 \ \mu m$ CMOS standard

Submitted to NIM-A:

A 15 GSa/s, 1.5 GHz Bandwidth Waveform Digitizing ASIC

Eric Oberla^{a,*}, Hervé Grabas^{a,1}, Jean-Francois Genat^{a,2}, Henry Frisch^a, Kurtis Nishimura^{b,3}, Gary Varner^b

2) Performance: table of measured results

Table 1: PSEC4 architecture parameters and measured performance results.

Parameter	Value	Comment	
Channels	6	die size constraint	
Sampling Rate	4-15 GSa/s	servo-locked on-chip	
Samples/channel	256	25 ns recording window at 10.24 GSa/s	Main
Analog Bandwidth	1.6 GHz	~2.5 dB distortion at 1.3 GHz	limitation of
Crosstalk	7%	max. over bandwidth	PSEC4
	<1%	typical for signals <800 MHz	PSEC4
Noise	$700 \mu V$	RMS (typical). RF-shielded enclosure.	
Effective ADC Resolution	10.5 bits	12 bits logged	
ADC time	$4 \mu s$	max. 12 bits logged at 1 GHz clock speed	
	250 ns	min. 8-bits logged at 1 GHz	
ADC clock speed	1.4 GHz	max.	
Dynamic Range	1 V	after linearity correction Readout's	peed not optimized
Readout time	$0.8n~\mu s$	n is number of 64-cell blocks to read ($n =$: 24 for entire chip)
Sustained Trigger Rate	50 kHz	max. per chip. Limited by [ADC time +	Readout time] ⁻¹
Power Consumption	100 mW	max. average power	
Core Voltage	1.2 V	$0.13 \mu m$ CMOS standard	

Submitted to NIM-A:

A 15 GSa/s, 1.5 GHz Bandwidth Waveform Digitizing ASIC

Eric Oberla^{a,*}, Hervé Grabas^{a,1}, Jean-Francois Genat^{a,2}, Henry Frisch^a, Kurtis Nishimura^{b,3}, Gary Varner^b

2) Performance: calibrations

Oscilloscope on a chip? Not quite...a modified approximation:

For example, a raw **PSEC-3** readout (10 GS/s) of 120 MHz, 150 mV_{rms} sine wave:

2) Performance: calibrations

2) Performance: calibrations

Want to minimize number of calibration steps!

What we learned: 3) 0.13 micron logistics

2013 Fabrication Schedule

	Technology		Customer Submission Date											
			Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
IBM —	8HP	0.13 μm	28		25		28		29		30		25	
	> 8RF 2	0.13 μm		19			20			19			18	
	8XP	0.13 μm							1				11	

CL013/CM013 0.).13 µm	7	11	8	10	5	7	9
CL013LP 0.).13 µm	7	11	8	10	5	7	9
CL013LV 0.).13 µm	7	11	8	10	5	7	9

- 1. Frequency of fabrication runs
- 2. Cost

....defer these items to PSEC5 discussion

What we learned: 4) Detector Integration

4) Integration: Demountable Setup Fitted w/ Full Electronics

Super Module (SuMo) Vertical Slice System Testing

SuMo System Testing

Analog Card can self-trigger

- Useful feature given PSEC-4's short buffer depth*
- Successful testing at APS using trigger photodiode:

*However, for most tests we use TTL output from laser driver system for DAQ triggering (much easier firmware...)

Dual-end PSEC4 pulse recording

Dual-end PSEC4 pulse recording:

Dual-end PSEC4 pulse recording (10 strips):

Dual-end PSEC4 pulse recording (10 strips):

Dual-end PSEC4 pulse recording (10 strips):

Dual-end PSEC4 pulse recording

Time difference for parallel-strip resolution

- •PSEC4 system (DAQ) timing resolution 50-100 ps 'out-of-the-box'
 - •Timing over a ~100 channel PSEC4 readout system relies on good clock distribution, trigger syncing, and good noise rejection in hardware..all things that could be improved
- •Single chip (2-channel) resolution ~2-10 ps, depending on signal processing algorithms

Conclusions

What we learned from PSEC4:

1. Design:

Full layout-extracted simulations required

2. Performance

 Met all design specifications. Wish list: Better self-trigger, faster readout, longer buffer, better trigger timing/referencing on-chip...=PSEC5

3. Logistics

Slow turn-around time with IBM 0.13 CMOS

4. Integration

Have a working PSEC4 DAQ. See performance wish list

Backup

Waveform Sampling ASICs

Already in use in many experiments...

Waveform samplers 'on the market':

ASIC	Amplification?	# chan	Depth/chan	Sampling [GSa/s]	Vendor	Size [nm]	Ext ADC?
DRS4	no.	8	1024	1-5	IBM	250	yes.
SAM	no.	2	1024	1-3	AMS	350	yes.
IRS2	no.	8	32536	1-4	TSMC	250	no.
BLAB3A	yes.	8	32536	1-4	TSMC	250	no.
TARGET	no.	16	4192	1-2.5	TSMC	250	no.
TARGET2	yes.	16	16384	1-2.5	TSMC	250	no.
TARGET3	no.	16	16384	1-2.5	TSMC	250	no.
PSEC3	no.	4	256	1-16	IBM	130	no.
PSEC4	no.	6	256	1-16	IBM	130	no.

37