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Silicon Detectors in HEP 

2	June	9,	2016	 Jessica	Metcalfe	

Silicon	detectors	are	a	cornerstone	of	High	
Energy	Physics	
	
Larger	frac8ons	of	detectors	are	made	with	
silicon	
• 	Limi8ng	factor	is	oRen	the	cost	
• 	More	layers	for	precise	tracking	
• 	shiR	toward	high	precision	silicon	calorimeters	
• 	no	reason	not	to	make	the	en8re	detector	out	
of	silicon	other	than	cost	



Design Challenges 
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High	Luminosity		
• 	enable	more	data,	more	science	
• 	more	interac8ons	per	event	
• 	HL-LHC:	average	200	interac8ons	per	event	
• 	creates	more	challenges	for	the	detector	
• 	radia8on	tolerance	

<μ>	=	20	 <μ>	=	200	

Other	Challenges/
Op(miza(ons	for	other	
applica(ons	



Technology Requirements 
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Requirements	for	future	silicon	detectors:	
• 	high	granularity	for	precision	tracking	
• 	shorter	radia8on	length	
• 	faster	8ming	
• 	10	ps	8ming	
• 	interac8on	vertex	iden8fica8on	
• 	par8cle	ID	discrimina8on	in	
calorimeters	

• 	radia8on	tolerance	
• 	reduce	cost	

⇒ 	Monolithic	devices	
⇒ 	Ver8cal	Integra8on		
⇒ 	Fast	‘amplifica8on’	devices	
	
	



Goals at Argonne 
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Goals:	
Build	a	pladorm	for	a	silicon	R&D	program	honed	toward	achieving	befer	performance	at	
reduced	cost	for	the	next	genera8on	of	HEP	experiments.	
	
Technologies:		
• HVCMOS	
• 	fast	8ming	
• 	reduce	costs	
	

• 	3D	Ver8cal	Integra8on	
• 	Reduce	mass	
• 	Reduce	complexity	of	assembly	
	

HVCMOS	MAPS	+	Fast	Timing	+	3D	Ver8cal	Integra8on	=	
The	Future…	

	
	



HVCMOS MAPS 
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HVCMOS	MAPS	
(high	voltage	complimentary	metal	oxide	semiconductor	monolithic	ac8ve	pixel	sensor)	
• 	Less	expensive	by	x2	than	tradi8onal	silicon	sensors	
• 	Integrated	sensor	+	signal	amplifica8on	
• 	Use	commercially	available	CMOS	processing	with	a	few	modifica8ons	
• 	Deep	n-well	to	isolate	on-pixel	electronics	
• 	high	resis8vity	substrates	for	high	voltage	without	breakdown	

• 	Timing	is	currently	~1-100	ns	
	



3D Silicon: Vertical Integration 
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3D	Silicon:	Ver8cal	Integra8on	
• 	stack	mul8ple	wafers	and	use	ver8cal	interconnects	
• 	pixelated	readout	
• 	reduce	mass	
• 	reduce	capacitance	for	lower	noise	
• 	eventually	may	eliminate	bump	bonding	
• 	reduce	cost	

VIP	chip	
• 	demonstrator	for	ILC	vertex	
read-out	
• 	Argonne/Fermilab	effort	under	
US-Japan	agreement	
• 	successful	readout	of	all	36,864		
pixels	



Silicon R&D 
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AMS	0.18	HV	 LF	150nm	 TowerJazz	180nm	
HV	 <100V	 <120V	 <5V	
HR	substrate	 1kohm/cm	 2kohm/cm	 1kohm/cm	epi	
Full	CMOS	 No	(triple	well)	 Yes	 Yes	
Metal	Layers	 6	 7	 6	
Max	Deple(on	width	 ~95um@100V	(70um@50V)	 ~140um@120V	(70um@25V)	 ~25um@5V	(~epi	layer)	

Collec(on	Time	 Fast	(thinned	to	95um)	 Fast	(thinned	to	140um)	 Fast	(thinned	to	25um)	

Capacitance	50x50um	
(educated	guess)	

~100fF	 ~150fF	 ~2fF	

MIP	conversion	 ~7500e-	 ~11000e-	 ~2000e-	

Noise	required	for	(S/
N=50)	

150e-	 220e-	 40e-	

Backside	Processing	 No	 Yes	 Yes	

S(tching	 No	 Yes	 Yes	

e e

e
e
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h
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ATLAS	Pixel	HVCMOS/MAPS	devices	under	inves8ga8on:	



Silicon R&D 
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S8ll	an	opportunity	to	join	ATLAS	HVCMOS/MAPS	pixel	effort	
•  Invited	to	join	‘AMS’	design		
•  This	design	s8ll	requires	bump-bonding	to	RD53	front-end	readout	ASIC	
•  Contribute	to	gamma	irradia8ons	(only	ones)	
•  Use	Felix	compa8ble	Caribou	readout	system	
•  Provide	assembly	of	new	samples	
•  ‘Demonstrator’	samples	currently	available		
•  AMS18	samples	will	be	available	this	fall	
•  Can	contribute	to	cost	of	run	~next	month	at	~$10-20k	for	ownership	



Silicon R&D 
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LFoundry	run:	
	
•  RD50	group	at	CERN	is	proposing	a	common	run	on	HVCMOS	at	
Lfoundry	
•  Can	request	basic	components	and	circuits	to	compliment	
irradia8on	studies	
•  Transistors,	resistors,	capacitors	
•  Simple	circuits	



O	

Opportunity	 Strengths	

Weaknesses	 Threats	
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HV	CMOS	

•  Join	high	profile	collabora8on	
•  Provide	unique	measurement	

feedback		
•  Poten8al	to	get	funds	through	

SBIR	

•  High	priority	for	DOE	HEP	
•  Large	number	of	experiments	it	

can	impact	
•  Monolithic	design	
•  Lower	cost	than	tradi8onal	

silicon	

•  Compe88ve	collabora8on	to	
‘make	our	mark’	

•  Compe88ve	collabora8on	to	
‘make	our	mark’	



O	

•  af	

Need	 Approach	

Benefit	 Compe((on	

•  High	volume	tracking	detectors	
•  High	granularity		
•  Low	cost	

•  Join	current	ATLAS	effort	
•  Focus	on	gamma	irradia8on	

damage	
•  Start	TCAD	simula8on	studies	
•  Expand	effort	over	8me	to	

develop	an	ANL	design	

•  Gain	valuable	exper8se	
•  Collaborate	with	BNL,	

European	effort	
•  Understand	charge	build-up	in	

oxides	
•  Posi8on	ANL	to	take	leading	

role	in	next	detector	
•  Bolster	pixel	assembly	efforts	

•  Part	of	a	large	collabora8on	
•  Unsure	if	adopted	in	ATLAS	

9/26/16	 12	

HV	CMOS	



LGAD 
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Low	Gain	Amplifying	Detectors	(LGADs)	
• 	rely	on	an	amplifying	region	to	boost	
collec8on	speeds	
• 	thin	layer	of	Boron	or	Gallium	
• 	modifies	the	electric	field	profile	as	
indicated	by	the	effec8ve	doping	
concentra8on	profile		

• 	Timing	measured	~15	ps	in	test	beam	
• 	Not	radia8on	tolerant	due	to	the	high	
reac8vity	of	the	accelerant	layer	

Sadrozinski,	CPAD	Mee8ng,	Arlington	2015	



Fast HVCMOS/MAPS 
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Add	a	boron	layer	similar	to	LGAD	

Modify	HVCMOS/MAPS	design	to	increase	8ming	resolu8on		
•  incorporate	amplifica8on	region	characteris8c	of	the	LGAD	sensors	
•  Manipulate	geometries:	thinner	sensors,	collec8on	wells,	applied	bias,	etc.	



O	

Opportunity	 Strengths	

Weaknesses	 Threats	
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LGAD	

•  New,	emerging	technology	
•  Unprecedented	8ming	

resolu8on	for	silicon	trackers	
•  Contribute	to	understanding	

radia8on	damage	mechanism	
•  Opportunity	to	move	toward	

smaller	pixels,	monolithic	
design	

•  15	ps	8ming	resolu8on	
achieved	in	test	beams	

•  Only	in	pad	detector	so	far	
•  Not	as	radia8on	tolerant	

•  Groups	are	quickly	gaining	
interest	



O	

•  af	

Need	 Approach	

Benefit	 Compe((on	

•  High	volume	tracking	detectors	
•  High	density	tracking	

environments	benefit	from	
pileup	rejec8on,	impact	
parameter,	b-tagging,	etc.	

•  Join	current	UCSC	effort	
•  Focus	on	irradia8on	damage?	
•  Start	TCAD	simula8on	studies	
•  Expand	effort	over	8me	to	

develop	an	ANL	design	

•  Add	8me	dimension	to	
experimental	tracking	data	

•  Gain	exper8se	in	fast	8ming	
•  Poten8al	to	combine	with	

HVCMOS	effort	for	truly	
unique	contribu8on	in	silicon	

•  Already	emerging	technology	
•  Part	of	a	medium	collabora8on	

9/26/16	 16	

LGAD	



TCAD Simulation 
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1.  Simulate	an	HVCMOS	sensor	
•  Use	APS	experience	to	accelerate	ini8a8ng	TCAD	simula8ons	
•  Use	APS	Sylvaco	TCAD	license	

2.  get	precise	agreement	between	simula8on	and	micro/macro	characteriza8on	
measurements	
•  Use	MSD	and	nanoscience	experience	for	more	accurate	and	complete	

characteriza8on	of	materials	for	input	to	simula8on	
•  Iden8fy	crystalline	proper8es:	defects,	trapping	centers,	doping	

concentra8ons,	mobili8es,	etc.	
3.  Gain	enough	understanding	to	modify	design	for	faster	signal	collec8on	
•  Boost	charge	collec8on	
•  Thinner	sensors	
•  Amplifica8on	regions	
•  Op8mize	electric	field	profile	
•  Reduce	breakdown	voltage	

4.  3D:	test	bench	and	test	beam	measurements	to	evaluate	performance	



Experience at Argonne 
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Mul8disciplinary	approach	to	silicon	detector	research:	
	
	Material	Science	Division	(MSD):		
• 	Scanning	Laser	Microscopy	
• 	defect	characteriza8on	
• 	inclusions,	strain,	damage,	twin	
bound.,	bandgap	and	doping	
varia8ons,	disloca8on	clusters,	
precipitates	,	stacking	faults		

• 	Scanning	electron	microscope	
• 	topography,	composi8on,	etc.	

=>	Input	into	simula8ons	for	befer	design	

Advanced	Photon	Source	(APS):	
• 	TCAD	silicon	sensor	device	simula8on	
(FASPAX)	
• 	Ver8cally	integrated	sensors	
• 	VIPIC	with	interposer	layer				



Device Characterization 
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Understanding	material	proper8es	befer	to	provide	input	for	simula8ons	and	smart	design	
•  requires	new	tools;	or	new	applica8on	of	tools	in	other	fields	
•  Use	electron	microscopy	techniques	in	ANL	MSD		
•  Image	of	radia8on	damage	where	lawce	was	struck	
•  Changes	effec8ve	doping	concentra8on	on	a	macroscopic	scale	
•  Befer	understand	charge	trapping,	surface	effects,	etc.		

•  Could	lead	to	super	computer	simula8ons	of	device	structure	and	radia8on	response	
	
	



O	

Opportunity	 Strengths	

Weaknesses	 Threats	
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Device	Characteriza(on	Techniques	

•  Leverage	exper8se	in	MSD	to	
befer	characterize	irradia8on	
damage	

•  Develop	new	tools	for	
evalua8on	

	

•  Compliments	poten8al	HV	
CMOS	and/or	LGAD	efforts	

•  Enable	smarter	future	sensor	
designs	

•  Allow	ANL	to	become	world	
leaders	in	this	area	

	
	

•  Not	a	new	technology	on	its	
own	

	



O	

•  af	

Need	 Approach	

Benefit	 Compe((on	

•  Need	to	understand	radia8on	
damage	mechanisms	for	LGAD	
and	HVCMOS/monolithic	
designs	

•  Collaborate	with	MSD	to	use	
electron	microscopy	and	other	
techniques	to	look	at	
irradiated	samples	

•  Develop	in-situ	techniques	
during	irradia8on	

•  Provide	cri8cal	feedback	for	
TCAD	simula8ons	of	radia8on	
damage	in	sensors	

•  Enhance	understanding	of	
basic	science	of	irradiated	
materials	

•  Some	spectroscopic	techniques	
to	iden8fy	trapping	defects	
are	already	used	by	RD50	
collabora8on	

9/26/16	 21	

Device	Characteriza(on	Techniques	



Thin Film Detectors 
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What’s	Next?	
•  Gain	a	greater	understanding	of	sensor	design	with	respect	to	material	composi8on	
•  Make	adjustments	to	that	design	
•  Next	Step:	move	toward	Thin	Film	Detectors	
•  Challenge	due	to	constraints	from	fabrica8on,	but	different	constraints	than	tradi8onal		

silicon	
•  Open	the	door	for	large	area	pixel	sensors,	material	tailored	for	type	of	par8cle	detec8on	

and	energy	range	of	par8cles,	can	be	very	inexpensive,	low	radia8on	length….	

Thin	Films:	thin	layers	of	materials	ranging	from	nm	to	μm	
•  Current	popular	applica8ons	

•  solar	cells	
•  LCD	screens	

•  Thin	Films	for	Par8cle	Detectors:	
•  Thin	Film	Diodes	+	Thin	Film	Transistors	



Thin Film Detectors 
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Thin	Film	(TF)	Fabrica8on	
	
•  Thin	Films	can	be	fabricated	using		
•  chemical	bath	deposi8on	
•  close-space	sublima8on	
•  Crystals	are	grown	in	thin	layers	on	a	substrate	with	high	precision		
•  Compare	to	tradi8onal	silicon	that	relies	on	growing	a	large	crystal	and	then	

drilling,	etching,	etc.	
•  TF’s	can	be	grown	at	least	200	μm	thick	
•  TF	fabrica8on	is	much	less	expensive	
•  	<	$10	per	m2	for	a	2.5	μm	thick	CdTe	film	

•  TF	can	be	deposited	on	flexible	substrates	such	as	organic	polymers	and	plas8cs	

•  Explore	the	possibility	of	3D	prin8ng	sensors	
•  ANL	also	has	exper8se	in	the	design	of	the	smallest	thin	film	transistors	
	

Can	do	at	
CNM	



Thin Film Detectors 
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Thin	Film	techniques	can	be	done	with	a	wide	variety	of	substrates.	Only	a	few	are	
standard	material	for	HEP	experiments,	with	silicon	being	the	most	widely	used.	

What	other	materials	might	work??	



Thin Film Detectors 
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O	

Opportunity	 Strengths	

Weaknesses	 Threats	
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Thin	Film	Detectors	

•  Opportunity	for	ANL	to	pioneer	
a	new	detector	technology	
with	poten8ally	a	very	broad	
range	of	applica8ons	

•  Advance	basic	science	
	

•  Leverage	CNM,	MSD	
•  Nanoscience	division	already	

works	on	world’s	smallest	thin	
film	transistor	

•  No	guarantee	of	success	
•  Collec8on	8mes	may	be	slower	
•  Radia8on	damage	proper8es	

are	unknown	
	

•  Another	group	takes	the	lead	
before	ANL	

	



O	

•  af	

Need	 Approach	

Benefit	 Compe((on	

•  Large	area	tracking	detector	
•  Very	low	cost	
•  Photon	detector	
•  Neutron	detector	for	na8onal	

security	
	

•  Leverage	exper8se	in	
Nanoscience	division	and	MSD	

•  Produce	TCAD	simula8ons	
•  Make	ini8al	samples	at	CNM	
•  Device	characteriza8on	

•  Completely	new	detector	
technology	with	broad	range	
of	poten8al	applica8ons	

•  UT	Dallas	has	program	for	
neutron	detectors	

•  UK-Mexico	grant	was	awarded	
•  (these	are	current	

collaborators,	but	we	can’t	
afford	to	wait	forever)	

9/26/16	 27	

Thin	Film	Detectors	
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3D	Prin(ng	

Jimmy’s	idea:	
Use	ANL’s	Addi8ve	Manufacturing	ini8a8ve	to	integrate	services	such	as	high/low	voltage	
and	data	transmission	in	a	printed	carbon	fiber	structure	to	serve	as	the	support	structure	
in	HEP	experiments.	
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Backup	



Silicon Detector Proposal for ANL 
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R&D	approach:	
• 	strive	for	more	intelligent	silicon	detector	design		
• 	enabled	by	recently	available	accurate	simula8ons	of	semiconductor	devices	and	radia8on	
effects	
• 	reduce	R&D	fabrica8on	costs	by	needing	fewer	design	itera8ons	(wafer	runs)	

• 	aim	for	faster,	cheaper	silicon	sensors	while	maintaining	performance	efficiency	
• 	propose	to	test	3D	ver8cally	integrated	sensors	
• 	reduce	radia8on	length	
• 	reduce	costly	assembly	steps	(bump	bonding)	

• 	propose	to	research	HVCMOS	MAPS		
• 	inherently	less	expensive	due	to	more	commercialized	fabrica8on	
• 	built-in	pixel	amplifica8ons	

• 	propose	to	leverage	experience	in	MSD	to	create	more	accurate	simula8ons	
• 	more	thorough	material	characteriza8on	

• 	propose	to	capitalize	on	experience	at	the	APS	in	TCAD	simula8ons	
• 	propose	to	coordinate	our	efforts	with	Brookhaven	for	a	more	effec8ve	US	
program	

• 	ul8mate	goal:	combine	HVCMOS	MAPS	with	ver8cal	read-out	integra8on	for	next	
genera8on	of	experiments	



Silicon R&D 
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UPDATE:	CMOS	MAPS	design	with	full	digital	architecture	(MonoPix)	underway	at	Bonn	

LFoundry	LF150	

LFA150:		
•  L-Foundry	150	nm	process	(deep	N-well/P-well)	
•  Up	to	7	metal	layers	
•  Resis8vity	of	wafer:	>2000	Ω·cm		
•  Small	implant	customiza8on	
•  Backside	processing	

CCPD_LF	prototype:		
•  Pixel	size:	33um	x	125	um	(6	pix	=2	pix	of	FEI4)	
•  Chip	size:	5	mm	x	5	mm	(24	x	114	pix)		
•  Bondable	to	FEI4	
•  300um	and	100um	version	
•  Bonn	+	CCPM	+KIT	

Room	for	improvement,	but	not	great	innova(on…	



Silicon R&D 
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Silicon	Innova8on	Opportuni8es	at	ANL:	
•  Bump-bonding	alterna8ves	(low	priority	now)	
•  Microscopic	device	characteriza(ons	for	understanding	radia(on	response	(signal	and	

damage)	
•  In-situ	measurements	during	irradia(on	
•  Input	into	TCAD	simula(ons	
•  Develop	Innova(ve	Tools	and	Techniques	

•  Ver8cal	Integra8on—already	started	by	other	ins8tu8ons,	need	to	look	further	into	
actual	status	to	see	if	there	is	s8ll	room	

•  Fast	(ming	in	HVCMOS/MAPS	
•  Apply	lessons	from	LGAD	research	to	HVCMOS	(fast	(ming	is	the	basis	of	EIC	

LDRD)	
•  Challenging	but	(reasonably)	clear	path	forward:	Innova(ve	

•  Thin	Film	Detectors	(and	3D	printed	detectors)	A	leap	forward,	very	innova(ve	


