Physics of polarized beams at the ILC

G. Moortgat-Pick (Uni Hamburg/DESY)

Status

- Polarization issues in top and Higgs physics
- Outlook

LINEAR COLLIDER COLLABORATION

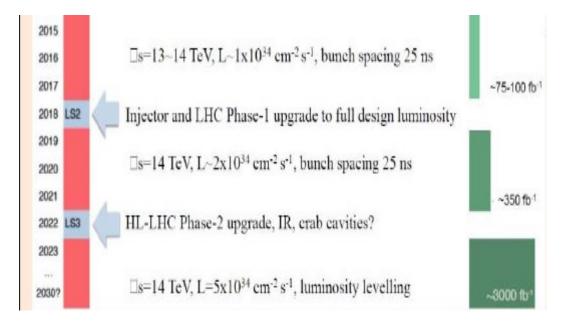
Status

Congratulations to the Kitakami region!

Site selection has been made !

- + positive statements from AsiaHEP, ACFA
- + JAHEP proposal for ILC from 250 GeV upgrade to higher energies

That's a big step towards our goal!


Posipo2013 @Argonne

Why still some caution?

- We have a Higgs! That's great.
- Why do we need to know all its properties with best precision? Because that's the bridge between 'micro' and 'macro' cosmos.
- We have the Top! That's great.
- Why do we need to know all its properties with best precision? Because that's the bridge to understand dynamics of EWSB.
- Excellent top physics at LHC (and HL-LHC) That's great!
- But no sign of new physicsso far That's strange.
- What do we really need from the ILC to be competitive?

Prospects LHC physics

- LHC timeline:
- from ~2023 on: 2nd
 phase of high lumi
 run at LHC
- ~2030: 3000 fb⁻¹ !!!

- ILC prospects:
- maybe first runs with \sqrt{s} =250 GeV ('Higgs physics')
- Physics potential of the ILC best as possible required in order to be competitive !

The full ILC physics offer

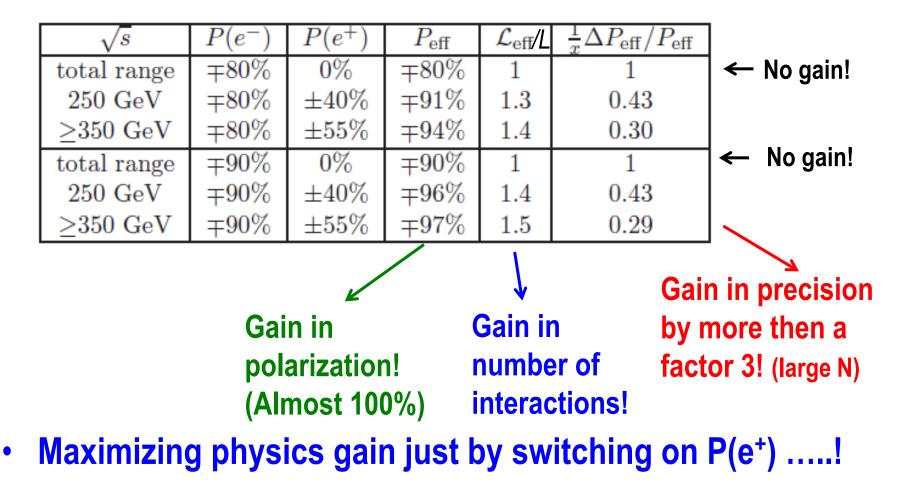
- Staged approach:
 - $-\sqrt{s}$ =250 GeV, `Higgs cross section, mass + couplings'
 - $-\sqrt{s}$ =350 GeV, `Higgs width + top mass'
 - \sqrt{s} =500 GeV, `Special Higgs- and top couplings+BSM'
 - ($\sqrt{s}=91$ GeV, `Precision frontier + indirect BSM frontier')
 - \sqrt{s} ≥1000 GeV, `Closing the Higgs picture+more BSM? '

Our charge!

- 'New' features, impact on 'quality' (and 'quantity'):
 - Flexible precise energy
 - Perform threshold scans
 - Polarized beams

Technical remarks beam polarization

- P(e⁻) ~ 80-90%
- **P(e⁺)** (always yield ≥1.5 imposed, i.e. 'full' lumi):


A. Ushakov, LC note

- √s=240 GeV: P(e+)=40%
- √s=350 GeV: P(e+)=56%
- √s=500 GeV: P(e+)=59%
- √s=1 TeV: P(e+)=54%
- Measurent of polarization:
 - Compton polarimetry (up- and down-stream): δP/P=0.25%
 - Via WW-process (lumi-weighted!): δP/P(e-)~0.1%,
 I. Marchesini,
 A.Rosca

δP/P(e+)~0.2-0.3%

 P_{eff} and L_{eff} for the staged approach

• With the listed parameters:

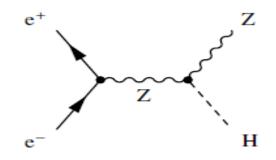
'New quality' effects via P(e+)

Access to chirality

Practically in all new physics models

- Chirality of particles/interactions has to be identified
- Since for E>>m: chirality = helicity = polarization
- Access to specific asymmetries (both beam pol. required)

$$A_{\text{double}} = \frac{\sigma(P_1, -P_2) + \sigma(-P_1, P_2) - \sigma(P_1, P_2) - \sigma(-P_1, -P_2)}{\sigma(P_1, -P_2) + \sigma(-P_1, P_2) + \sigma(-P_1, -P_2) + \sigma(-P_1, -P_2)},$$


- Exploitation of transversely-polarized beams (~ P_e. P_{e+})
 - Access to tensor-like interactions (Extra dimensions, etc.)
 - Access to CP-violating phenomena
 - Access to specific triple gauge couplings
 - Optimize top quark polarization

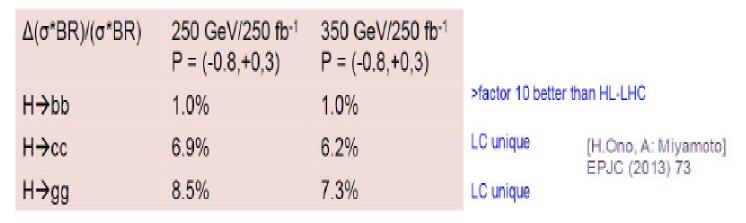
Posipo2013 @Argonne

Gudrid Moortgat-Pick

Process: Higgs Strahlung $\sqrt{s}=250 \text{ GeV}$

- $\sqrt{s}=250 \text{ GeV}$: dominant process
- Why crucial?
 - allows model-independent access!

- Absolute measurement of Higgs cross section σ (HZ) and g_{HZZ} : crucial input for all further Higgs measurements !


$$\sqrt{s}$$
250 GeVInt. \mathcal{L} 250 fb-1 $\Delta(\sigma)/\sigma$ 2.5% $\Delta(g_{\rm HZZ})/g_{\rm HZZ}$ 1.3%

- Reconstructed recoil mass distributions (eeX, μμX):
 ΔmH=32 MeV
- Model independent coupling measurement

Polarization at the Higgs frontier

- $\sqrt{s}=250$ GeV, Higgs strahlung, HZ production
 - Determination of couplings to c, b,g

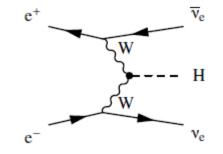
- Scaling factor about $\sigma_{pol}/\sigma_{unpol} \sim (1-0.151 P_{eff}) * L_{eff}/L$
 - With $P_{e+}=0\%$: $\sigma_{pol}/\sigma_{unpol}\sim 1.13$
 - With P_{e+} =30%: $\sigma_{pol}/\sigma_{unpol}$ ~1.44
 - With P_{e+} =40%: $\sigma_{pol}/\sigma_{unpol}$ ~1.55

(about 8% increase comp. to 30%)

- $\sqrt{s}=350$ GeV: improvement for Higgs couplings
 - $In Higgsstrahlung: \sigma_{pol} / \sigma_{unpol} \sim (1-0.151 P_{eff}) * L_{eff} / L$ $With P_{e+} = 0\%: \sigma_{pol} / \sigma_{unpol} \sim 1.13$ $With P_{e+} = 30\%: \sigma_{pol} / \sigma_{unpol} \sim 1.44$ $With P_{e+} = 55\%: \sigma_{pol} / \sigma_{unpol} \sim 1.71$ (about 20% increase comp. 30%)
 - In WW-Fusion: $\sigma_{pol}/\sigma_{unpol} \sim (1 P_{eff}) * L_{eff}/L$

With $P_{e^+}=0\%$: $\sigma_{pol}/\sigma_{unpol} \sim 1.90$ With $P_{e^+}=30\%$: $\sigma_{pol}/\sigma_{unpol} \sim 2.40$ With $P_{e^+}=55\%$: $\sigma_{pol}/\sigma_{unpol} \sim 2.95$

(about 23% increase comp. 30%)



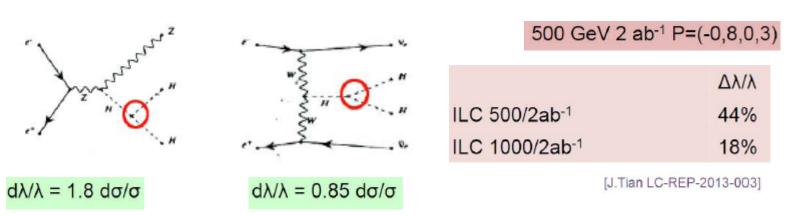
• $\sqrt{s}=350$ GeV: Access to Higgs total width :

- Total width for mH=125 GeV: T_h^{tot} ~4 MeV!
- Does need WW-fusion

$\Delta T_h^{tot} / T_h^{tot}$
13%
~7%
~5-6%
~ 4%

Scaling factor: $\sigma_{pol}/\sigma_{unpol} \sim (1 - P_{eff}) * L_{eff}/L$

- Higgs width crucial for absolute BR's, couplings and model discrimination!
- Enhancement of P_{eff} and L_{eff} important!


Posipo2013l@Argonne

Gudrid Moortgat-Pick

- Very important for establishing Higgs mechanism!
 - LHC estimates:
 - about Δλ_{HHH}~32% at HL-LHC (14 TeV, 3000fb⁻¹)
 - At LC: Very challenging (small rates , lots of dilution+backg.)

- Further improvement with P_{e+} =55% instead of P_{e+} =30%:
 - Same scaling factors as given before
 - about 50% enhancement comp. to $P_{e+}=0\%$

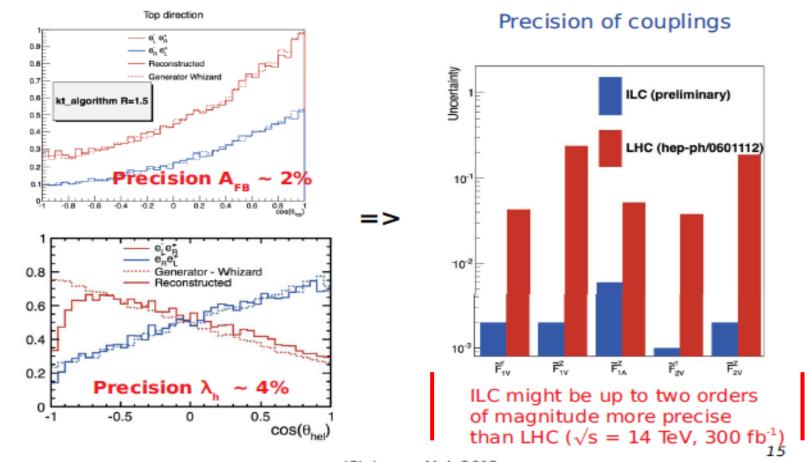
Posipo2013l@Argonne

Top quark production at ILC

- Top very special role: heaviest fundamental fermion
 - most strongly coupled to EWSB sector!
 - Intimately related to the dynamics behind the EWSB mechanism √s=350 GeV
 - Precision mass measurement m_{top}~100 MeV
 - $-M_{top}$ affects M_H , M_W , M_Z via radiative corrections
 - Top quark couplings open also a window to new physics !

- $\sqrt{s}=500$ GeV: chiral structure of ew top couplings:
 - expected to be sensitive to BSM sources
 - Measurement of ' g_{ttz} ' and ' $g_{tt\gamma}$ ' rather unique for a LC!
- Use different observables
 - Cross section
 - \mathbf{A}_{FB}
 - helicity angle
- Couplings measurable at %-level
 - thanks to the different observables
 - To runs with different beam polarization configurations P(e-), P(e+)

Role of e+ polarization: allowed to vary form factors independently!


Coupling	SM value	LHC [1]	e^+e^- [6]	$e^+e^-[ILC DBD]$
		$\mathcal{L} = 300 \text{ fb}^{-1}$	$\mathcal{L} = 300 \text{ fb}^{-1}$	$\mathcal{L} = 500 \text{ fb}^{-1}$
			$\mathcal{P},\mathcal{P}'=-0.8,0$	$\mathcal{P},\mathcal{P}'=\pm0.8,\mp0.3$
$\Delta \tilde{F}_{1V}^{\gamma}$	0.66	$^{+0.043}_{-0.041}$	_	$^{+0.002}_{-0.002}$
$\Delta \widetilde{F}_{1V}^Z$	0.23	$^{+0.240}_{-0.620}$	$^{+0.004}_{-0.004}$	$^{+0.003}_{-0.003}$
$\Delta \widetilde{F}^Z_{1A}$	-0.59	$^{+0.052}_{-0.060}$	$^{+0.009}_{-0.013}$	$^{+0.005}_{-0.005}$
$\Delta \widetilde{F}_{2V}^{\gamma}$	0.015	$^{+0.038}_{-0.035}$	$^{+0.004}_{-0.004}$	$^{+0.003}_{-0.003}$
$\Delta \widetilde{F}^Z_{2V}$	0.018	$^{+0.270}_{-0.190}$	$^{\mathrm{+0.004}}_{\mathrm{-0.004}}$	$^{+0.006}_{-0.006}$

Results of full simulation study for DBD at $\sqrt{s} = 500$ GeV

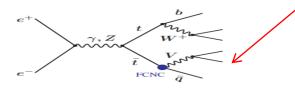
Precision: x section ~ 0.5%

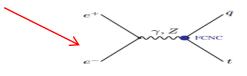
LC-REP-2013-007

Top Yukawa coupling

- $\sqrt{s=500 \text{ GeV}}$: top-Yukawa couplings:
 - At this energy: ttH is close to threshold
 - But thanks to threshold effects: σ enhancement by factor 2!
 - Key role in dynamics of ew symmetry-breaking
- Direct measurement of Yukawa couplings: g_{ttH}
 - With P(e-,e+)=(-80%,+30%) and 1600 fb $^{-1}$

Δg_{ttH} / g_{ttH}<16% but model-independent!


LHC estimates: about Δg_{ttH}~10% at HL-LHC (14 TeV, 3000fb⁻¹)


- With P_{eff} = 89% -> 97%: further improvement of Δg_{ttH}
- √s=1000 GeV:
 - With P(e-,e+)=(-80%,+20%) and 2500 fb $^{-1}$
 - $\Delta g_{ttH} / g_{ttH} < 4\% !$

Top FCNC

- Flavour-changing neutral couplings
 - Relevant for many BSM
 - Can be studied in top pair or single top production

- Using polarized beams (3 σ , based on 300-500 fb⁻¹) :

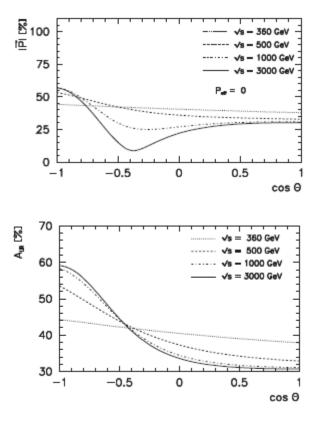
	unpolarized beams	$ P_{e^-} = 80\%$	$(P_{e^-} , P_{e^+}) = (80\%, 45\%)$	
	$\sqrt{s} = 500 \mathrm{GeV}$			
$BR(t \to Zq)(\gamma_{\mu})$	6.1×10^{-4}	3.9×10^{-4}	2.2×10^{-4}	
$BR(t \to Zq)(\sigma_{\mu\nu})$	4.8×10^{-5}	3.1×10^{-5}	$1.7 imes 10^{-5}$	
$BR(t \rightarrow \gamma q)$	$3.0 imes 10^{-5}$	1.7×10^{-5}	$9.3 imes 10^{-6}$	
	$\sqrt{s} = 800 \text{ GeV}$			
$BR(t \to Zq)(\gamma_{\mu})$	5.9×10^{-4}	4.3×10^{-4}	$2.3 imes 10^{-4}$	
$BR(t \to Zq)(\sigma_{\mu\nu})$	$1.7 imes 10^{-5}$	1.3×10^{-5}	$7.0 imes 10^{-6}$	
$BR(t \rightarrow \gamma q)$	$1.0 imes 10^{-5}$	$6.7 imes 10^{-6}$	$3.6 imes 10^{-6}$	

Exceeding LHC !

At the LC: sensitivty up to 10⁻⁶ to FCNC couplings!

Top polarization

• **Top=3**rd generation:

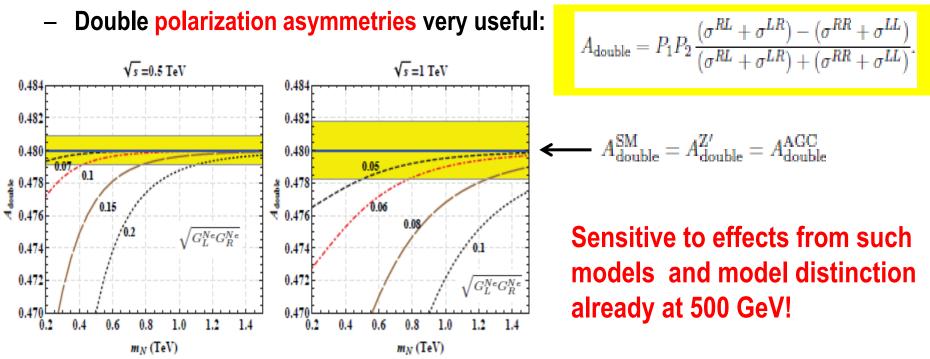

Koerner et al.

- polarization = analyzing tool for SM/BSM couplings
- Window to new physics!
- With beam polarization:
 - P_{top} can be tuned maximal/minimal

$$A_{FB} = \frac{3}{4} \; \frac{g_{44} + P_{\rm eff} g_{14}}{g_{11} + P_{\rm eff} g_{41}} = 0.61 \frac{1 - 0.27 P_{\rm eff}}{1 - 0.33 P_{\rm eff}} \, . \label{eq:AFB}$$

- Left-right asymmetry (at NLO):
- P_{top}=max for P_{eff}~1
 - P_{eff}= -1 favoured (more stable)
- P_{top}=0 for P_{eff}~0.4

Posipo2013 @Argonne


Effects of transverse beams Vs=500 GeV

- Transversely-polarized beams in e+e- -> tt
 probe scalar- and tensor-like interactions
- Probes of models with extra dimension
- Use angular distributions with $P_{e^+}^T P_{e^+}^T$
 - Sensitive to azimuthal angle: specific asymmetries
 - New study:
 - Assumed 100% beams
- Sensitive to small
 Scalar, Tensor-admixtures

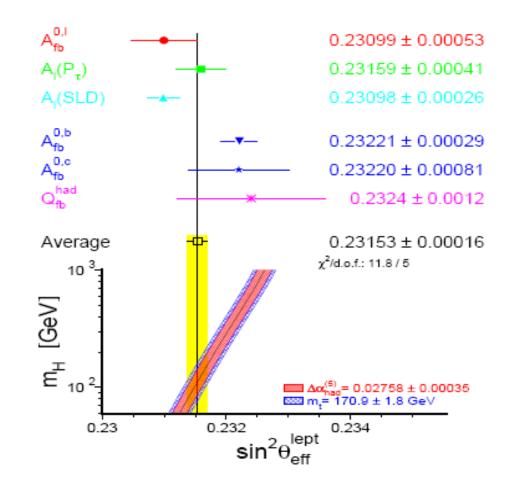
\sqrt{s}	Case	Coupling	Individual limit from asymmetries			Individual limit from asymmetries		
			$A_1(\theta_0)$	$A_2(\theta_0)$	$A_1^{F\;B}\left(\theta_0 ight)$	$A_{2}^{FB}\left(\theta_{0}\right)$		
500GeV	+-	ReS ReT ImT	$1.2 \times 10^{-3} \text{TeV}^{-2}$	$2.3 \times 10^{-3} \text{TeV}^{-2}$		$5.2 \times 10^{-3} \text{TeV}^{-2}$		
	++	$\mathrm{Im}S$ $\mathrm{Re}T$ $\mathrm{Im}T$	$2.3 \times 10^{-3} \text{TeV}^{-2}$	$1.2 \times 10^{-3} \text{TeV}^{-2}$	$5.2 \times 10^{-3} \mathrm{TeV}^{-2}$	1.0 x 10 ⁻² TeV ⁻²		

P(e+) in WW in exotic searches $\sqrt{s=500} G_{eV}$

- Study: e+e- -> W+W-
 - Very sensitive to leptonic vertices and trilinear gauge couplings
 - Well-known: transverse beams only access to CP trilinear couplings
 - Long. beams: New study for cont. of heavy neutral boson or heavy leptons
- Model identification = exclusion of competitive models (incl. SM)

Posipo2013 @Argonne

Gudrid Moortgat-Pick


What if nothing else than H is found now?

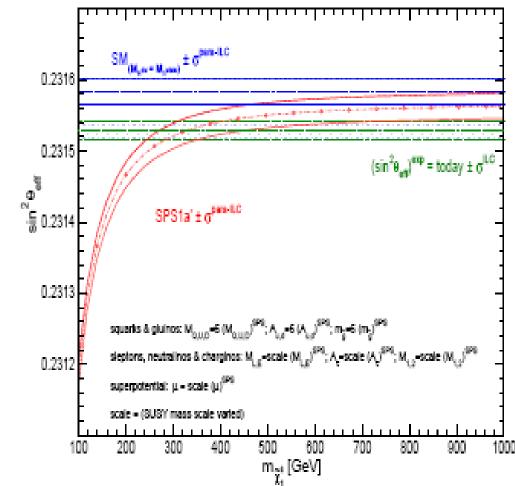
The exciting Higgs story has just started....

- Since m_H is free parameter in SM at tree level
 - Crucial relations exist, however, between m_{top} , m_W and $sin^2\theta_{eff}$
 - If nothing else appears in the electroweak sector, these relations have to be urgently checked
- Which strategy should one aim?
 - exploit precision observables and check whether the measured values fit together at quantum level
 - m_Z , m_W , α_{had} , $sin^2\theta_{eff}$ und m_{top}
- Exploit `GigaZ' option: high lumi run at \sqrt{s} = 91 GeV
 - Pe-=80% and Pe+=60% required !

(If only Pe-=90% : precision ~factor 4 less!)

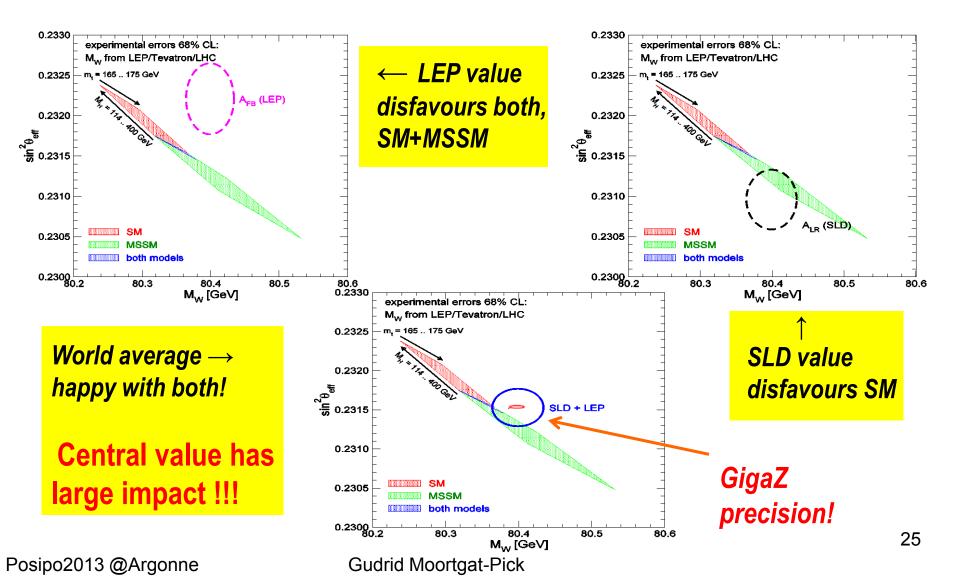
Higgs story has just started ... $\sqrt{s=91} G_{eV}$

LEP:


- sin²θ_{eff}(A_{FB}^b)= 0.23221±0.00029 SLC:
- sin²θ_{eff}(A_{LR})= 0.23098±0.00026
- World average:

sin²θ_{eff} = 0.23153±0.00016

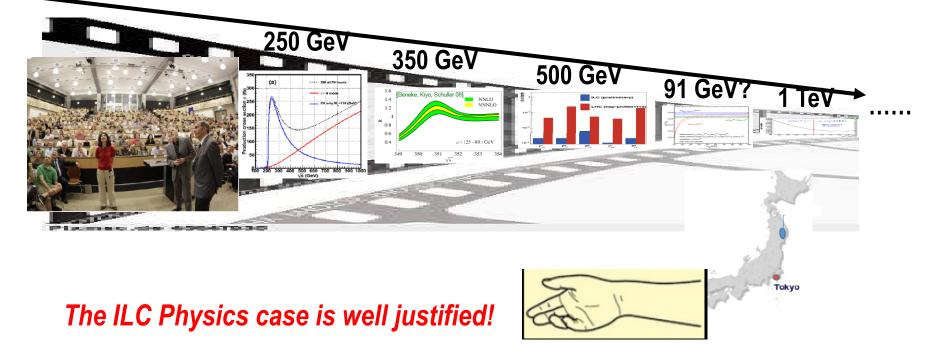
Goal GigaZ: Δsinθ=1.3 10⁻⁵



- Assume only Higgs@LHC but no hints for SUSY:
 - Really SM?
 - Help from $\sin^2\theta_{eff}$?
- If GigaZ precision:
 - i.e. Δm_{top} =0.1 GeV...
 - Deviations measurable
- sin²θ_{eff} can be the crucial quantity to reveal effects of NP!

To close the story... GigaZ $\sqrt{s=91} G_{eV}$

• Measure $\sin^2\theta_{eff}$ via A_{LR} with high precision: $\Delta \sin\theta = 1.3 \ 10^{-5}$



- Beam polarization gives 'added-value' to ILC
 - longitudinally as well as transversely polarized beams
 - Provides 'new' analysis tools comp. with LHC
- Positron polarization quality and quantity
 - gain in lumi
 - gain in polarization
 - less uncertainties
 - access to 'new' physics windows
- Important from beginning (Higgs + top + WW !)
 - Optimizes physics potential
 - Crucial to compete with LHC options!
 - And.....do not forget GigaZ option: play a safety !!!

Outlook

- The ILC offers new tools already in top and Higgs physics:
 - Optimized physics potential with long+transv. polarized beams
 - complements and extends the HL-LHC capabilities !
 - sensitive to new physics via quantum effects
- Allows to fully exploit GigaZ! ...keeping our 'savety margin'

