INVESTIGATIONS OF THE ILC
UNDULATOR SPECTRUM WITH HUSR

Ayash Alrashdi and Dr. lan Bailey
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Required vy flux (approximately 10%° y/s) for high-luminosity electron-
positron colliders such as the ILC.

The TDR parameters for the baseline source at 150 GeV are
assumed throughout this talk.

Mike Jenkins presented some work from HUSR at POSIPOL12.
Mike’s talk focused on positron production and realistic magnets.
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SIMULATING UNDULATOR PHOTON SPECTRA

»HUSR simulates a photon spectrum from an arbitrary
magnetic field map.

»Using different arbitrary maps is possible in HUSR e.g.
Include errors in the magnet, tapering, etc.
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Initially we use an ideal helical undulator.
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SIMULATING UNDULATOR PHOTON SPECTRA



HUSR: PHOTON SPECTRA

Generate a Lie map from a B field

_ _ defined on a 3d mesh.
HUSR developed at Cockcroft Institute by David Newton

¥
°b oo ow oo Track electron(s) through
§ the Lie Map.
- ; oo '
' Set observation points
4
Calculate the retarded potential
Mool o3 ok edei § odr oo oo oot from electron(s).
e.g. Electric field from the 15t observation ¥
Point From the retarded potential calculate
2100 mm m /\f\ m m m m m the_ electric fielq at eac.h observation
e B | point as a function of time.
- WAL 3
= MOB\W \W \W \W \W \\U \W ] Calculate the frequency spectrum of
! the observed radiation by Fourier

0 X107 2x107  3.x107  4x107  5x10 transforming the field.
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BENCHMARKING HUSR
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Where H is the unit-step function and J and J' are Bessel functions of the first kind and it’s
derivative with respect to x; and:
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BENCHMARKING HUSR
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OBSERVATION POINTS

Observation Points
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RECENT EXTENSIONS TO HUSR

We changed the algorithm for setting the observation points
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Observation Points
-0.006 -0.004 -0.002 0 0.002 0.004 0.006

004 -0.002 0 0.002 0.004 0.006 0.008
: ‘ : - +0.008
0.0061 L0.006 I
: [ 10.006
0.004 L0.004 [
] [ 0.004 £0.004
0.0023 [0.002 0.002 [0.002
> 0 fo > 0 0
-0.002 ',.0_002 -0.002 [-0.002
] [ 0.004 £-0.004
-0.004 [-0.004 f
] [ -0.006 1-0.006
-0.006- L-0.006 [
: : : -0.008 : : : ; : -0.008
-0.006 -0.004 -0.002 0 0.002 0.004 0.006 *0.008 -0.006 -0.004 -0.002 0 0.002 0.004 0.006 0.008
X X

Low resolution



RECENT EXTENSIONS TO HUSR

We changed the algorithm for setting the observation points
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RECENT EXTENSIONS TO HUSR

We changed the algorithm for setting the observation points
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CURRENT GAMMA-RAY SOURCES AND THEIR APPLICATIONS
HIGS (108 photon/s, Bandwidth 5%-10%) at Duke University, USA.

ELI-NP is being designed (~1013 photon/s, Bandwidth 0.3%).

Energy bandwidth A E /E  is very important (narrow bandwidth is better).

Basic Nuclear Physics
Nuclear resonance fluorescence (NRF) technique.
Giant Dipole Resonance (GDR).

Industrial applications

Radiographical techniques such as gammagraphy and Computerized
Tomography (CT).

Instrumentation

Photon beams can be used for precise calibration of specialized detectors such
as dosimeters, gamma ray lenses, etc.

Production of radio isotopes
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CURRENT GAMMA-RAY SOURCES AND THEIR APPLICATIONS
HIGS (108 photon/s, Bandwidth 5%-10%) at Duke University, USA.

ELI-NP is being designed (~1013 photon/s, Bandwidth 0.3%).

Energy bandwidth A E /E, is very important (narrow bandwidth is better).

Basic Nuclear Physics
Nuclear resonance fluorescence (NRF) technique.

Giant Dipole Resonance (GDR). Understand the structure of the nucleus

Industrial applications

Radiographical techniques such as gammagraphy and Computerized

Tomography (CT). Using gamma ray to image materials

Instrumentation

Photon beams can be used for precise calibration of specialized detectors such
as dosimeters, gamma ray lenses, etc.

Production of radio isotopes



Approximately 93% of the photon beam will pass through the target
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HUSR STUDIES

Approximately 93% of the photon beam will pass through the target

Now, in order to explore HUSR, we proposed a new idea
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Now, in order to explore HUSR, we proposed a new idea
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HUSR STUDIES

Approximately 93% of the photon beam will pass through the target

Now, in order to explore HUSR, we proposed a new idea
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“HOURGLASS” SHAPED APERTURE

We investigated different shapes to see if we obtain a narrow bandwidth.

Observation Points

0005 -0004 -0003 -0.002 0.001 0 0001 0002 0.003
00015 4o L L L 100015
o.om—f 5-0.001
o,ooos—f f—o.ooos

| | /
00005 00005 /
0.001 E—-o.om
-o.oows'......l...l...l..|...|....|...:-o‘oo15

-0.005 -0.004 -0.003 -0.002 -0.001 0  0.001 0.02 0.003
X



HOURGLASS SPECTRUM
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Flux (dN/dE)

HOURGLASS SPECTRUM
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HOURGLASS SPECTRUM

Flux (dN/dE)
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HOURGLASS SPECTRUM

1.x 10~ %3} | ]
| ]
| |
3 | | L
8. % 1{]—34_ || | J
- Aperture Position (-0.0005,0.0) m | 1
. HUSRE | |I 1
Ll f
2 14. |' '
5 6.x 1077} .I -
E L | £
I |
' = = 0 " '
A w103 AE,/E=0.17/10=1.7% N1
I f | 1
Vad .
ot
/ﬁuf .
2.x 10~ 3¢ _— ]
—— FWHM ~0.17 MeV | || |
ﬂ- Il . -
6 7 8 0 10

Energy (MeV)



HOURGLASS SPECTRUM

Flux (dN/dE)
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IDEAL UNDULATOR PHOTON DISTRIBUTIONS
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SUVMMARY AND FUTURE WORK

Good agreement between HUSR and Kincaid
for an ideal undulator.

New version (GSR) now in development.

Further investigations ongoing on how the
spectrum changes after the target.

Good chance of using the remaining photon
flux to do “something else” with it.
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HUSR: PARTICLE TRACKING

READ IN

HUSR utilizes Lie maps in the tracking FIELD MAP
of particles through a magnetic field

CALCULATE
HAMILTONIAN

INTEGRATE
HAMILTONIAN

GENERATE
LIE MAP

OUTPUT
LIE MAP
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