INVESTIGATIONS OF THE ILC UNDULATOR SPECTRUM WITH HUSR

Ayash Alrashdi and Dr. Ian Bailey

INTRODUCTION

- > Required γ flux (approximately 10¹⁶ γ /s) for high-luminosity electronpositron colliders such as the ILC.
- The TDR parameters for the baseline source at 150 GeV are assumed throughout this talk.
- Mike Jenkins presented some work from HUSR at POSIPOL12.
- Mike's talk focused on positron production and realistic magnets.

SIMULATING UNDULATOR PHOTON SPECTRA

>HUSR simulates a photon spectrum from an arbitrary magnetic field map.

Using different arbitrary maps is possible in HUSR e.g. include errors in the magnet, tapering, etc.

SIMULATING UNDULATOR PHOTON SPECTRA

Initially we use an ideal helical undulator.

$$B_x = B_0 \sin\left(\frac{2\pi z}{\lambda_u}\right)$$
$$B_y = B_0 \cos\left(\frac{2\pi z}{\lambda_u}\right)$$
$$B_0 = 0.88 \text{ T}$$

HUSR: PHOTON SPECTRA

HUSR developed at Cockcroft Institute by David Newton

e.g. Electric field from the $\mathbf{1}^{st}$ observation point

Generate a Lie map from a B field defined on a 3d mesh.

Track electron(s) through the Lie Map.

Set observation points

Calculate the retarded potential from electron(s).

From the retarded potential calculate the electric field at each observation point as a function of time.

Calculate the frequency spectrum of the observed radiation by Fourier transforming the field.

BENCHMARKING HUSR

BENCHMARKING HUSR

OBSERVATION POINTS

RECENT EXTENSIONS TO HUSR

We changed the algorithm for setting the observation points

Low resolution

RECENT EXTENSIONS TO HUSR

We changed the algorithm for setting the observation points

High resolution

RECENT EXTENSIONS TO HUSR

We changed the algorithm for setting the observation points

CURRENT GAMMA-RAY SOURCES AND THEIR APPLICATIONS

- HIGS (10⁸ photon/s, Bandwidth 5%-10%) at Duke University, USA.
- ELI-NP is being designed ($\sim 10^{13}$ photon/s, Bandwidth 0.3%).
- Energy bandwidth $\Delta E_v/E_v$ is very important (narrow bandwidth is better).

Basic Nuclear Physics

- Nuclear resonance fluorescence (NRF) technique.
- Giant Dipole Resonance (GDR).

Industrial applications

Radiographical techniques such as gammagraphy and Computerized Tomography (CT).

Instrumentation

Photon beams can be used for precise calibration of specialized detectors such as dosimeters, gamma ray lenses, etc.

Production of radio isotopes

CURRENT GAMMA-RAY SOURCES AND THEIR APPLICATIONS

- HIGS (10⁸ photon/s, Bandwidth 5%-10%) at Duke University, USA.
- ELI-NP is being designed ($\sim 10^{13}$ photon/s, Bandwidth 0.3%).
- Energy bandwidth $\Delta E_v/E_v$ is very important (narrow bandwidth is better).

Basic Nuclear Physics

- Nuclear resonance fluorescence (NRF) technique.
- Giant Dipole Resonance (GDR).

Understand the structure of the nucleus

Industrial applications

Radiographical techniques such as gammagraphy and Computerized Tomography (CT).

Instrumentation

Photon beams can be used for precise calibration of specialized detectors such as dosimeters, gamma ray lenses, etc.

Production of radio isotopes

CURRENT GAMMA-RAY SOURCES AND THEIR APPLICATIONS

- HIGS (10⁸ photon/s, Bandwidth 5%-10%) at Duke University, USA.
- ELI-NP is being designed ($\sim 10^{13}$ photon/s, Bandwidth 0.3%).
- Energy bandwidth $\Delta E_v/E_v$ is very important (narrow bandwidth is better).

Basic Nuclear Physics

- Nuclear resonance fluorescence (NRF) technique.
- Giant Dipole Resonance (GDR).

Understand the structure of the nucleus

Industrial applications

Radiographical techniques such as gammagraphy and Computerized Tomography (CT). Using gamma ray to image materials

Instrumentation

Photon beams can be used for precise calibration of specialized detectors such as dosimeters, gamma ray lenses, etc.

Production of radio isotopes

Approximately 93% of the photon beam will pass through the target

Approximately 93% of the photon beam will pass through the target

Now, in order to explore HUSR, we proposed a new idea

Approximately 93% of the photon beam will pass through the target

Now, in order to explore HUSR, we proposed a new idea

Approximately 93% of the photon beam will pass through the target

Now, in order to explore HUSR, we proposed a new idea

"HOURGLASS" SHAPED APERTURE

We investigated different shapes to see if we obtain a narrow bandwidth.

POLARIZATION

IDEAL UNDULATOR PHOTON DISTRIBUTIONS

Average Energy

Flux

SUMMARY AND FUTURE WORK

- Good agreement between HUSR and Kincaid for an ideal undulator.
- New version (GSR) now in development.
- Further investigations ongoing on how the spectrum changes after the target.
- Good chance of using the remaining photon flux to do "something else" with it.

Thanks for your attention !

BACK UP SLIDES

HUSR: PARTICLE TRACKING

HUSR utilizes Lie maps in the tracking of particles through a magnetic field

