NLO merging with MiNLO and NNLOPS: VV and VH

Emanuele Re

CERN & LAPTh Annecy

LAPTA

LoopFest XVI Argonne National Laboratory, 31 May 2017

plan of the talk

1. vector boson pair production

- access to anomalous gauge couplings
- background for several searches, for instance $H \rightarrow WW$
- NLO+PS merging of $pp \rightarrow WW$ and $pp \rightarrow WWj$ using MiNLO

2. associated Higgs production

- new-Physics in VVH vertex
- $H \rightarrow b\bar{b}$ decay (in boosted regime)
- NNLO+PS matching for $pp \rightarrow HW$

1. vector boson pair production

[Hamilton, Melia, Monni, ER, Zanderighi '16]

Multiscale Improved NLO

- original goal: method to a-priori choose scales in multijet NLO computation
- non-trivial task: hierarchy among scales can spoil accuracy (large logs can appear, without being resummed)
- how: correct weights of different NLO terms with CKKW-inspired approach (without spoiling formal NLO accuracy)

MiNLO

Multiscale Improved NLO

- original goal: method to a-priori choose scales in multijet NLO computation
- non-trivial task: hierarchy among scales can spoil accuracy (large logs can appear, without being resummed)
- how: correct weights of different NLO terms with CKKW-inspired approach (without spoiling formal NLO accuracy)

$$\bar{B}_{\rm NLO} = \alpha_{\rm S}(\mu_R) \Big[B + \alpha_{\rm S} V(\mu_R) + \alpha_{\rm S} \int d\Phi_{\rm r} R \Big]$$

MiNLO

Multiscale Improved NLO

- original goal: method to a-priori choose scales in multijet NLO computation
- non-trivial task: hierarchy among scales can spoil accuracy (large logs can appear, without being resummed)
- how: correct weights of different NLO terms with CKKW-inspired approach (without spoiling formal NLO accuracy)

$$\bar{B}_{\rm NLO} = \alpha_{\rm S}(\mu_R) \Big[B + \alpha_{\rm S} V(\mu_R) + \alpha_{\rm S} \int d\Phi_{\rm r} R \Big]$$

$$\bar{B}_{\rm MiNLO} = \alpha_{\rm S}(q_T) \Delta_q^2(q_T, m_V) \Big[B \left(1 - 2\Delta_q^{(1)}(q_T, m_V) \right) + \alpha_{\rm S} V(\bar{\mu}_R) + \alpha_{\rm S} \int d\Phi_{\rm r} R \Big]$$

MiNLO

Multiscale Improved NLO

- original goal: method to a-priori choose scales in multijet NLO computation
- non-trivial task: hierarchy among scales can spoil accuracy (large logs can appear, without being resummed)
- how: correct weights of different NLO terms with CKKW-inspired approach (without spoiling formal NLO accuracy)

$$\bar{B}_{\rm NLO} = \alpha_{\rm S}(\mu_R) \Big[B + \alpha_{\rm S} V(\mu_R) + \alpha_{\rm S} \int d\Phi_{\rm r} R \Big]$$

$$\bar{B}_{\rm MiNLO} = \alpha_{\rm S}(\boldsymbol{q_T}) \Delta_{\boldsymbol{q}}^2(\boldsymbol{q_T}, \boldsymbol{m_V}) \Big[B \left(1 - 2\Delta_{\boldsymbol{q}}^{(1)}(\boldsymbol{q_T}, \boldsymbol{m_V}) \right) + \alpha_{\rm S} V(\bar{\boldsymbol{\mu}_R}) + \alpha_{\rm S} \int d\Phi_{\rm r} R \Big]$$

$$\begin{array}{c} & \bar{\mu}_{R} = q_{T} \\ & & \Delta(q_{T}, m_{V}) \\ \hline q_{T} & \Delta(q_{T}, q_{T}) \cdot \log \Delta_{\mathrm{f}}(q_{T}, m_{V}) = -\int_{q_{T}^{2}}^{m_{V}^{2}} \frac{dq^{2}}{q^{2}} \frac{\alpha_{\mathrm{S}}(q^{2})}{2\pi} \Big[A_{f} \log \frac{m_{V}^{2}}{q^{2}} + B_{f} \Big] \\ \hline \\ \hline \\ \hline \\ \Delta(q_{T}, m_{V}) \\ \hline \\ \Delta(q_{T}, m_{V}) \\ \hline \\ \end{array} \\ \begin{array}{c} \Delta_{\mathrm{f}}^{(1)}(q_{T}, m_{V}) = -\frac{\alpha_{\mathrm{S}}}{2\pi} \Big[\frac{1}{2} A_{1,f} \log^{2} \frac{m_{V}^{2}}{q_{T}^{2}} + B_{1,f} \log \frac{m_{V}^{2}}{q_{T}^{2}} \Big] \\ \\ \mu_{F} = q_{T} \end{array}$$

Multiscale Improved NLO

[Hamilton,Nason,Zanderighi '12]

- original goal: method to a-priori choose scales in multijet NLO computation
- non-trivial task: hierarchy among scales can spoil accuracy (large logs can appear, without being resummed)
- how: correct weights of different NLO terms with CKKW-inspired approach (without spoiling formal NLO accuracy)

$$\bar{B}_{
m NLO} = lpha_{
m S}(\mu_R) \Big[B + lpha_{
m S} V(\mu_R) + lpha_{
m S} \int d\Phi_{
m r} R \Big]$$

$$\bar{\beta}_{\rm MiNLO} = \alpha_{\rm S}(\boldsymbol{q_T}) \Delta_{\boldsymbol{q}}^2(\boldsymbol{q_T}, \boldsymbol{m_V}) \Big[B \left(1 - 2\Delta_{\boldsymbol{q}}^{(1)}(\boldsymbol{q_T}, \boldsymbol{m_V}) \right) + \alpha_{\rm S} V(\bar{\boldsymbol{\mu}_R}) + \alpha_{\rm S} \int d\Phi_{\rm r} R \Big]$$

Sudakov FF included on *V*+*j* Born kinematics

- Minlo-improved VJ yields finite results also when 1st jet is unresolved ($q_T \rightarrow 0$)
- $\blacktriangleright~\bar{B}_{\rm MiNLO}$ allows extending the validity of <code>VJ-POWHEG</code> [called "<code>VJ-MiNLO</code>" hereafter]

MiNLO'

► formal accuracy of VJ-MiNLO for inclusive observables carefully investigated

[Hamilton et al., 1212.4504]

▶ possible to improve VJ-MiNLO such that inclusive NLO is recovered (NLO⁽⁰⁾), without spoiling NLO accuracy of *V*+*j* (NLO⁽¹⁾):

MiNLO': NLO+PS merging, without merging scale

- ► accurate control of subleading small-*p*_T logarithms is needed:
 - ▶ include B₂ (NNLL) coefficient in MiNLO-Sudakov
 - set scales in R, V and subtraction terms equal to q_T (boson transverse momentum)
 - \blacktriangleright without the above requirements, spurious $\alpha_{\rm S}^{3/2}$ terms show up in $\sigma_{\rm NLO}^{(0)}$ upon integration over q_T

MiNLO'

► formal accuracy of VJ-MiNLO for inclusive observables carefully investigated

[Hamilton et al., 1212.4504]

possible to improve VJ-MiNLO such that inclusive NLO is recovered (NLO⁽⁰⁾), without spoiling NLO accuracy of V+j (NLO⁽¹⁾):

MiNLO': NLO+PS merging, without merging scale

- accurate control of subleading small-p_T logarithms is needed:
 - ▶ include B₂ (NNLL) coefficient in MiNLO-Sudakov
 - ▶ set scales in R, V and subtraction terms equal to q_T (boson transverse momentum)
 - \blacktriangleright without the above requirements, spurious $\alpha_{\rm S}^{3/2}$ terms show up in $\sigma_{\rm NLO}^{(0)}$ upon integration over q_T

MiNLO': from Drell-Yan to WW

1606.07062: MiNLO' generator that merges WW and WW + 1 jet at NLO+PS:

- POWHEG WWJ generator obtained ex-novo using interfaces to Madgraph and Gosam 2.0 [Campbell et al. 1202.547; Luisoni et al. 1306.2542; Cullen et al. 1404.7096]
- ▶ starting from the Drell-Yan case, we extracted the $B_2^{(WW)}$ term from the virtual ($V^{(WW)}$) and Born ($B^{(WW)}$) contributions of $pp \to WW$
- ▶ for Drell-Yan, V^(V) and B^(V) are proportional, hence B^(V)₂ is just a number
- in $pp \to WW$, this is no longer true: $B_2^{(WW)} = B_2^{(WW)}(\Phi_{WW})$
 - for $q\bar{q}$ -initiated color singlet production, B_2 has the form

$$B_2 = -2\gamma^{(2)} + \beta_0 C_F \zeta_2 + 2(2C_F)^2 \zeta_3 + \beta_0 H_1(\Phi)$$

- from which

$$B_2^{(\rm WW)} = B_2^{(\rm V)} - \beta_0 H_1^{(\rm V)} + \beta_0 H_1^{(\rm WW)}(\Phi_{WW})$$

process-dependent part of B₂ extracted on an event-by-event basis: projection of Φ_{WWJ} onto Φ_{WW}, used FKS ISR mapping (smooth collinear limit)

WWJ-MiNLO': technical details and choices

 All off-shell and single-resonant diagrams included. Full matrix-element with leptonic decays.

- worked in the 4F scheme: no interference with Wt and $t\bar{t}$
- ▶ for same-family leptons, " $Z(\rightarrow \ell \bar{\ell})Z(\rightarrow \nu_{\ell} \bar{\nu}_{\ell})$ " not included:

option to include/exclude fermionic loop corrections (at most 1-2% difference in tails, x2 difference in speed)

WWJ-MiNLO': results |

[Hamilton, Melia, Monni, ER, Zanderighi '16]

WW generator vs. WWJ-MiNLO generator

- total cross-section agrees at the level of 4% (although MiNLO uncertainty bands are wider than the WW ones)
- part of the shape difference in y_{WW} is correlated with the differences in the p_{T,WW} spectrum

WWJ-MiNLO': results ||

[Hamilton,Melia,Monni,ER,Zanderighi '16]

WW generator vs. WWJ-MiNLO generator

- NLO corrections sizeable in the spectrum
- small p_T region: different terms in the two approaches.
 - . at small $p_{T},$ there's also a non-zero contribution from the two-emissions matrix element (missing in the WW case)
- underestimated WW uncertainty band

color-singlet *p*_Tspectrum

[Monni,ER,Torrielli '16]

- \blacktriangleright to implement MiNLO' , possible also to use $(p_T^{j_1})$ as resolution variable (using Sudakov from "jet-veto" resummation)
- ongoing studies suggest that this would improve the shape at small p_T (at least qualitatively)
- probably related to scaling properties at small p_T
- > perhaps some of the aforementioned differences are related to this...

WWJ-MiNLO': results III

[Hamilton, Melia, Monni, ER, Zanderighi '16]

WW generator vs. WWJ-MiNLO generator here explicit jet requirement: 25 GeV, R=0.4

- below 25 GeV, at least 2 QCD emissions needed: only PS for WW, LO matrix elements for WWJ-MiNLO
- NLO K-factor visible throughout
- notice WWJ uncertainty bands: WWJ is NLO accurate for p_{T,WW} > 25 GeV, whereas WW is only LO.

WWJ-MiNLO': results IV

[Hamilton, Melia, Monni, ER, Zanderighi '16]

WW generator vs. WWJ-MiNLO generator (WW+j at NLO, partonic) here explicit jet requirement: 25 GeV, R=0.4

- ▶ right plot shows that MiNLO mantains the formal NLO accuracy in the "1-jet" region
- ▶ small differences: Sudakov effects, different scale choices ($\mu_{NLO} = 2m_W$ vs. μ_{MiNLO})

2. VH @ NNLO+PS

[Astill, Bizon, ER, Zanderighi '16]

- ▶ starting from a MiNLO' generator, it's possible to match a PS simulation to NNLO
- XJ-MINLO' (+POWHEG) generator gives X-XJ @ NLOPS

	X (inclusive)	X+j (inclusive)	X+2j (inclusive)
🗸 X-XJ @ NLOPS	NLO	NLO	LO
X @ NNLOPS	NNLO	NLO	LO

- ▶ starting from a MiNLO' generator, it's possible to match a PS simulation to NNLO
- XJ-MiNLO' (+POWHEG) generator gives X-XJ @ NLOPS

	X (inclusive)	X+j (inclusive)	X+2j (inclusive)
🗸 X-XJ @ NLOPS	NLO	NLO	LO
X @ NNLOPS	NNLO	NLO	LO

▶ reweighting (differential on Φ_B) of "MiNLO-generated" events:

$$W(\Phi_B) = \frac{\left(\frac{d\sigma}{d\Phi_B}\right)_{\text{NNLO}}}{\left(\frac{d\sigma}{d\Phi_B}\right)_{\text{XJ-MiNLO'}}}$$

- by construction NNLO accuracy on fully inclusive observables
- to reach NNLOPS accuracy, need to be sure that the reweighting doesn't spoil the NLO accuracy of XJ-MiNLO in 1-jet region

[1]

- starting from a MiNLO' generator, it's possible to match a PS simulation to NNLO
- XJ-MiNLO' (+POWHEG) generator gives X-XJ @ NLOPS

	X (inclusive)	X+j (inclusive)	X+2j (inclusive)
🗸 X-XJ @ NLOPS	NLO	NLO	LO
🗸 X @ NNLOPS	NNLO	NLO	LO

▶ reweighting (differential on Φ_B) of "MiNLO-generated" events:

$$W(\Phi_B) = \frac{\left(\frac{d\sigma}{d\Phi_B}\right)_{\text{NNLO}}}{\left(\frac{d\sigma}{d\Phi_B}\right)_{\text{XJ-MiNLO'}}} = \frac{c_0 + c_1\alpha_{\text{S}} + c_2\alpha_{\text{S}}^2}{c_0 + c_1\alpha_{\text{S}} + d_2\alpha_{\text{S}}^2} \simeq 1 + \frac{c_2 - d_2}{c_0}\alpha_{\text{S}}^2 + \mathcal{O}(\alpha_{\text{S}}^3)$$

- by construction NNLO accuracy on fully inclusive observables
- ► to reach NNLOPS accuracy, need to be sure that the reweighting doesn't spoil the NLO accuracy of XJ-MiNLO in 1-jet region
 [√]

[1]

- ▶ starting from a MiNLO' generator, it's possible to match a PS simulation to NNLO
- XJ-MiNLO' (+POWHEG) generator gives X-XJ @ NLOPS

	X (inclusive)	X+j (inclusive)	X+2j (inclusive)
🗸 X-XJ @ NLOPS	NLO	NLO	LO
🗸 X @ NNLOPS	NNLO	NLO	LO

▶ reweighting (differential on Φ_B) of "Minlo-generated" events:

$$W(\Phi_B) = \frac{\left(\frac{d\sigma}{d\Phi_B}\right)_{\text{NNLO}}}{\left(\frac{d\sigma}{d\Phi_B}\right)_{\text{XJ-MiNLO'}}} = \frac{c_0 + c_1\alpha_{\text{S}} + c_2\alpha_{\text{S}}^2}{c_0 + c_1\alpha_{\text{S}} + d_2\alpha_{\text{S}}^2} \simeq 1 + \frac{c_2 - d_2}{c_0}\alpha_{\text{S}}^2 + \mathcal{O}(\alpha_{\text{S}}^3)$$

- by construction NNLO accuracy on fully inclusive observables
- ► to reach NNLOPS accuracy, need to be sure that the reweighting doesn't spoil the NLO accuracy of XJ-MiNLO in 1-jet region
 [√]
- ▶ notice: formally works because no spurious $\mathcal{O}(\alpha_{\rm S}^{1.5})$ terms in X-XJ @ NLOPS (relative to σ_X)

[1]

• Variants for reweighting $W(\Phi_B)$ are also possible:

$$\begin{split} W(\Phi_B, p_T) &= h(p_T) \frac{\int d\sigma_A^{\rm NNLO} \delta(\Phi_B - \Phi_B(\mathbf{\Phi}))}{\int d\sigma_A^{\rm MiNLO} \delta(\Phi_B - \Phi_B(\mathbf{\Phi}))} + (1 - h(p_T)) \\ &= d\sigma \ h(p_T), \qquad d\sigma_B = d\sigma \ (1 - h(p_T)), \qquad h(p_T) = \frac{(\beta M)^2}{(\beta M)^2 + p_T^2} \end{split}$$

- freedom to distribute "NNLO/NLO K-factor" only over medium-small p_T region
- $h(p_T)$ controls where the NNLO/NLO K-factor is distributed (in the high- p_T region, there is no improvement in including it)
- β cannot be too small, otherwise resummation spoiled: for Higgs, chosen $\beta = 1/2$; for DY and HW, $\beta = 1$
- in practice, we used

 $d\sigma_{\Lambda}$

$$W(\Phi_B, p_T) = h(p_T) \frac{\int d\sigma^{\text{NNLO}} \delta(\Phi_B - \Phi_B(\mathbf{\Phi})) - \int d\sigma_B^{\text{MiNLO}} \delta(\Phi_B - \Phi_B(\mathbf{\Phi}))}{\int d\sigma_A^{\text{MiNLO}} \delta(\Phi_B - \Phi_B(\mathbf{\Phi}))} + (1 - h(p_T))$$

- one gets exactly $(d\sigma/d\Phi_B)_{
 m NNLOPS} = (d\sigma/d\Phi_B)_{
 m NNLO}$
- chosen $h(p_T^{j_1})$

WH @ NNLOPS: technical details and choices

started from existing HWJ-MiNLO' generator

[Luisoni et al. 1306.2542]

- NNLO input from HVNNLO by [Ferrera et al. '11]
- ► to compute the $W(\Phi_B)$ function, $(d\sigma_{NNLO}/d\Phi_B)$ needed!
 - \Rightarrow albeit conceptually simple, in practice it gets quickly complicated
- Higgs and Drell-Yan production: extracted (dσ_{NNLO}/dΦ_B) numerically as a (multi-dimensional) histogram: 25 bins/dimension
- not possible for $W(\rightarrow \ell \nu)H$ [at least using brute-force approach]
- used properties of final state: $(y_{HW}, \Delta y_{HW}, p_{t,H})$ + Collins-Soper angles

$$\frac{d\sigma}{d\Phi_B} = \frac{d\sigma}{dy_{\rm HW} \, d\Delta y_{\rm HW} \, dp_{t,\rm H} \, d\cos\theta^* d\phi^*}$$

$$= \frac{3}{16\pi} \left(\frac{d\sigma}{d\Phi_{\rm HW^*}} (1 + \cos^2\theta^*) + \sum_{i=0}^7 A_i (\Phi_{\rm HW^*}) f_i(\theta^*, \phi^*) \right)$$

- moreover verified that reweighting factor is independent from lepton pair invariant mass
- ▶ $(25)^5$ bins \rightarrow 9 × 3-d histograms (still tough, but manageable)

WH @ NNLOPS: validation

- ▶ left: CS coefficient A₄ as a function of y_{HW}. NNLOPS agrees with NNLO
- right: θ^* distribution in a y_{HW} window.
 - very good agreement between NNLOPS, the NNLO result, and the differential NNLO cross section reconstructed from the CS parametrization.

WH @ NNLOPS: results I

- \blacktriangleright left: inclusive observable \rightarrow NNLO+PS is NNLO accurate, and displays non-flat K-factor w.r.t. NLO+PS
- ▶ right: *p*^{*t*} of color-singlet: standard observable to visualize Sudakov resummation.
 - p_t dependence of NNLO reweighting visible
 - NNLO+PS approach NLO+PS at large p_t

conclusions

- presented a recent non-trivial application of the "improved" MiNLO method:
 - aside from applying it to processes of the same class ($pp \rightarrow VV$), one obvious avenue to be explored is <code>NNLOPS</code> simulations for $2 \rightarrow 2$ processes.
 - . in principle, for color singlet (as VV production), all ingredients are there.
 - including the gg-initiated channels at NLO+PS can also be studied

results for $gg \rightarrow ZZ$: [Alioli et al. 1609.09719]

- ▶ presented NNLO+PS results for $pp \rightarrow HW$:
 - the HZ case is straightforward
 - boosted regime will become increasingly important: possible to include also $H \rightarrow b\bar{b}$ at NLO (techniques developed for resonance-aware NLO+PS)
- variants of the MiNLO method might allow better resummation properties for the final results

conclusions

- presented a recent non-trivial application of the "improved" MiNLO method:
 - aside from applying it to processes of the same class ($pp \rightarrow VV$), one obvious avenue to be explored is <code>NNLOPS</code> simulations for $2 \rightarrow 2$ processes.
 - . in principle, for color singlet (as VV production), all ingredients are there.
 - including the gg-initiated channels at NLO+PS can also be studied

results for $gg \rightarrow ZZ$: [Alioli et al. 1609.09719]

- ▶ presented NNLO+PS results for $pp \rightarrow HW$:
 - the HZ case is straightforward
 - boosted regime will become increasingly important: possible to include also $H \rightarrow b\bar{b}$ at NLO (techniques developed for resonance-aware NLO+PS)
- variants of the MiNLO method might allow better resummation properties for the final results

Extra slides

"Improved" MiNLO & NLOPS merging: details

Resummation formula can be written as

$$\frac{d\sigma}{dq_T^2 dy} = \sigma_0 \frac{d}{dq_T^2} \left\{ [C_{ga} \otimes f_a](x_A, q_T) \times [C_{gb} \otimes f_b](x_B, q_T) \times \exp S(q_T, Q) \right\} + R_f$$
$$S(q_T, Q) = -2 \int_{q_T^2}^{Q^2} \frac{dq^2}{q^2} \frac{\alpha_{\rm S}(q^2)}{2\pi} \left[A_f \log \frac{Q^2}{q^2} + B_f \right]$$

- If $C_{ij}^{(1)}$ included and R_f is LO⁽¹⁾, then upon integration we get NLO⁽⁰⁾
- MiNLO formula is not written as a total derivative: "expand" the above expression, then compare with MiNLO:

$$\sim \sigma_0 \frac{1}{q_T^2} [\alpha_{\rm S}, \alpha_{\rm S}^2, \alpha_{\rm S}^3, \alpha_{\rm S}^4, \alpha_{\rm S} L, \alpha_{\rm S}^2 L, \alpha_{\rm S}^3 L, \alpha_{\rm S}^4 L] \exp S(q_T, Q) + R_f \qquad L = \log(Q^2/q_T^2)$$

highlighted terms are needed to reach NLO⁽⁰⁾:

$$\int^{Q^2} \frac{dq_T^2}{q_T^2} L^m \alpha_{\rm S}{}^n(q_T) \exp S \sim \left(\alpha_{\rm S}(Q^2)\right)^{n-(m+1)/2}$$

(scaling in low- p_T region is $\alpha_{\rm S} L^2 \sim 1!$)

- Find the include B_2 in MiNLO Δ_g , I miss a term $(1/q_T^2)$ $\alpha_{\rm S}^2$ $B_2 \exp S$
- ▶ upon integration, violate NLO⁽⁰⁾ by a term of <u>relative</u> O(a_S^{3/2})