Numerical Unitarity Method for Two-loop Amplitudes in QCD

based on work with S.Abreu, F. Febres Cordero, M. Jaquier, B. Page (Freiburg); M. Zeng (UCLA)

DFG

Harald Ita

University of Freiburg, Germany

Loopfest 2017, May 3I- June 2, Argonne National Laboratory

Content

Motivation

Unitarity Method @ 2-Loops

Geometric Properties

LHC Motivation

Taken from Rolf Heuer in CERN General Meeting January 2013.

A Theory Aim

Percent-level precision target often requires NNLO in QCD.

Many 2-to-2 processes known @ NNLO.
Can we add recoiling jet to signature final states in order to access kinematic dependence? Can we add mass effects?

Benchmark processes:

- Pure QCD amplitudes; 4-point [Glover, Oleari TejedaYeomans 01; Bern Freitas Dixon 02] - see Ben Page's talk
- 5/6-point pure QCD first results: [Badger, Frellesvig, Zhang I5; Gehrmann, Henn, Lo Presti I5; Badger, Mogull, Perabo 16; Dunbar, Jehu, Perkins 16].
- Loop induced processes, multi-scale processes

Complex dynamic of proton collisions:

Precise predictions are a multi-layered problem:

$$
\begin{aligned}
\mathrm{d} \hat{\sigma}_{i j, N N L O} & =\int_{\mathrm{d} \Phi_{n+2}}\left[\mathrm{~d} \hat{\sigma}_{i j, N N L O}^{R R}-\mathrm{d} \hat{\sigma}_{i j, N N L O}^{S}\right] \\
& +\int_{\mathrm{d} \Phi_{n+1}}\left[\mathrm{~d} \hat{\sigma}_{i j, N N L O}^{R V}-\mathrm{d} \hat{\sigma}_{i j, N N L O}^{T}\right] \\
& +\int_{\mathrm{d} \Phi_{n}}\left[\mathrm{~d} \hat{\sigma}_{i j, N N L O}^{V V}-\mathrm{d} \hat{\sigma}_{i j, N N L O}^{U}\right]
\end{aligned}
$$

[Antenna subtraction; Gehrmann-De Ridder, Gehrmann,
Glover; Kosower]

Why Unitarity Approach?

Amplitude computation are complex: Feynman diagrams - integral reduction - integration.

- Large intermediate expressions with compacter results.
- Can we find simplicity at intermediate steps?

Unitarity method:

- Exploits additional properties of amplitudes (onshell \& geometry)
- Numerical approach: suitable for multi-scale problems, e.g.W+5jets @ NLO.
- First spin off: classification of integral relations see Yang Zhang's and Mao Zeng's talks

Some key multi-loop methods: tensor reduction [Tarasov 96; Anastasiou, Glover, Oleari 99], Integration-by-parts identities [Tkachov, Chetyrkin 8।], Lorentz invariance identities [Gehrmann, Remiddi 99], Laporta algorithm [Laporta 01]
[BlackHat; Bern, Dixon, Febres Cordero, HI, Kosower, Maitre, '13]

Hidden Geometry

Coordinate change exposes fiber structure:

$$
\mathcal{I}[t]=\int \frac{[d \rho]}{\rho^{0} \ldots \tilde{\rho}^{(\tilde{N}-1)}} \times t(\rho, \alpha) \mu(\rho, \alpha)[d \alpha]
$$

Functional dependence on internal spaces important for full integral.

One loop example: internal spaces are spheres; all non-constant harmonic functions integrate to zero $=$ IBP relations.

See also: 'The Analytic S-Matrix', Eden, Landshoff, Olive, Polkinhorne; Baikov; HI; Zhang Larsen

Geometry comes with natural structures:

- Function ring => irreducible numerators; tangent vectors => IBP relations
- Cohomology => master integrals; moduli spaces \& connections => differential equations

The Unitarity Method

Amplitude master equation:

$$
A\left(p_{i}\right)=\int\left[d^{(n D)} \ell\right] \tilde{A}\left(\ell, p_{i}\right)=\sum_{\text {integral basis }} c_{j}\left(p_{i}\right) \int\left[d^{(n D)} \ell\right] \frac{m_{j}\left(\ell, p_{i}\right)}{\rho^{1} \cdots \rho^{N}}
$$

Universal analytic properties of amplitudes imply:

$$
\begin{aligned}
\int_{\mathcal{C}} & {[\mathrm{dLIPS}] \tilde{A}_{1}\left(\ell, p_{i}\right) \times \cdots \times \tilde{A}_{m}\left(\ell, p_{i}\right) } \\
& =\sum_{\text {integrals with cuts }} c_{j}\left(p_{i}\right) \int_{\mathcal{C}}[\mathrm{dLIPS}] \frac{m_{j}\left(\ell, p_{i}\right)}{\text { (uncut propagator terms) }}
\end{aligned}
$$

Simpler equations \& simpler on-shell input.

Bootstrap program: [Chew, Mandelstam; Eden, Landshoff, Olive, Polkinghorne;Veneziano; Virasoro,
Shapiro; ...]

Multi-loop pioneers [Bern, Dixon, Kosower, Dunbar 94; Bern, Dixon, Dunbar, Perelstein, Rozowsky 98; Bern, Dixon, Kosower 00]

Recent work on duality of master integrals \& contours [Kosower, Larsen II; Caron-Huot, Larsen I2; Georgoudis, Zhang 15; Sogaard, Zhang 14; HI I5; Harley, Moriello, Schabinger; Bosma, Sogaard, Zhang; Primo, Tancredi I7]

Unitarity Approach - Integrands

Use integrand basis and remove integration:

$$
\tilde{A}\left(\ell, p_{i}\right)=\sum_{j \text { ji integrand basis }} c_{j}\left(p_{i}\right) \frac{m_{j}\left(\ell, p_{i}\right)}{\rho^{1} \ldots \rho^{N}}
$$

Classification of integrands [Badger, Frellesvig, Zhang. I3; Mastrolia, Mirabella, Ossola, Peraro 12]

Factorisation in loop momenta [Ellis, Giele, Kunszt]:

$$
\lim _{\left\{\rho^{2}\right\} \rightarrow 0} \tilde{(}\left(\ell, p_{i}\right) \rightarrow \tilde{A}_{1}\left(\ell, p_{i}\right) \times \cdots \times \tilde{A}_{m}\left(\ell, p_{i}\right) \frac{1}{(\text { large propagator terms) }}
$$

Algebraic equations using tree-level data:

$$
\tilde{A}_{1}\left(\ell, p_{i}\right) \times \cdots \times \tilde{A}_{m}\left(\ell, p_{i}\right)=
$$

$$
\sum_{\text {jin large integrands }} c_{j}\left(p_{i}\right) m_{j}\left(\ell, p_{i}\right)
$$

previously computed topologies

Properties:

- Universal and numerical
- But: additional integral reduction required

Numerical Unitarity Method

Integrand decomposition into masters integrands and vanishing integrals:

$$
\tilde{A}\left(\ell, p_{i}\right)=\sum_{\mathrm{j} \text { in master integrands }} c_{j}\left(p_{i}\right) \frac{m_{j}\left(\ell, p_{i}\right)}{\rho^{1} \cdots \rho^{N}}+\sum_{\mathrm{j} \text { in surfacee terms }} c_{j}\left(p_{i}\right) \frac{m_{j}\left(\ell, p_{i}\right)}{\rho^{1} \cdots \rho^{N}}
$$

@ one-loop [Ossola
Papadopoulos, Pittau 07; Ellis,
Giele Kunszt 07; Giele Kunszt,
Melnikov 08]
@ two/multi-loop [HII 5]
use

Algebraic `cut equations’ suitable for numerics (\& analytic computations):

$$
\tilde{A}_{1}\left(\ell, p_{i}\right) \times \cdots \times \tilde{A}_{m}\left(\ell, p_{i}\right)=\sum_{j \text { in large integrands }} c_{j}\left(p_{i}\right) m_{j}\left(\ell, p_{i}\right)
$$

+ previously computed topologies

Two-in-one approach: obtain coefficients \& reduction. No additional integral reduction required - just drop surface terms.

surface ternns

Vanishing integrals given as integration-byparts identities [HI 15]. A generalisation of [Aguila, Ossola, Papadopoulos, Pittau 04; Ellis, Giele, Kunszt 07]

Need to control propagator powers for compatibility with unitarity equations => IBP-generating vectors u (see eqns).

Geometric interpretation $[\mathrm{HI} 15$, see similar Zhang 14]:

- Particular vector fields in momentum space which become tangent to unitarity-cut surface - see Mao Zeng's talk
[Tkachov, Chetyrkin 8I]

$$
0=\int \prod_{l=1,2} d^{D} \ell_{l} \frac{\partial}{\partial \ell_{j}^{\nu}}\left[\frac{u_{j}^{\nu}}{\prod_{k \in P_{\Gamma}} \rho_{k}}\right]
$$

[Gluza, Kajda, Kosower I0]

$$
\begin{gathered}
\partial_{\mu}\left(\frac{u^{\mu}}{\rho^{i}}\right)=\frac{1}{\rho^{i}} \partial_{\mu} u^{\mu}-\frac{1}{\left(\rho^{i}\right)^{2}} u^{\mu} \partial_{\mu} \rho^{i} \\
\longrightarrow u_{i}^{\nu} \frac{\partial}{\partial \ell_{i}^{\nu}} \rho_{j}=f_{j} \rho_{j}
\end{gathered}
$$

Unitarity-cut surface and IBP-generating vector field:

Natural Coordinates

Work at individual propagator structures.
General coordinate transformation [HI 15; Larsen, Zhang I5].

Additional constraint for polynomial vector fields => syzygy equations.

Explicit solutions for planar topologies with generic mass assignments [HI 15].

Special cases solved with Singular-program. Other approaches using computer algebra [Gluza, Kajda, Kosower I0; Schabinger II].
(I) $u_{i}^{\nu} \frac{\partial}{\partial \ell_{i}^{\nu}} \rho_{j}=f_{j} \rho_{j}$
(2) $\left\{\ell_{1}, \ell_{2}, \ldots\right\} \rightarrow\left\{\rho_{k}, \alpha^{j}\right\}$
auxiliary coordinates \longrightarrow
(3) $\left(u_{j} \frac{\partial}{\partial \rho_{j}}+u^{a} \frac{\partial}{\partial \alpha^{a}}\right) \rho_{k}=u_{j} \delta_{k}^{j}=f_{k} \rho_{k}$
$\longrightarrow\left\{u_{i}, u^{a}\right\}=\left\{f_{i} \rho_{i}, u^{a}\right\}$

Classification of IBP
 relations

Classification of IBP-generating vectors:

foliation of momentum space in $\rho^{i}=$ const. slices

- Horizontal:

$$
\left(u^{i}, u^{a}\right)=\left(0, u^{a}\right)
$$

- Vertical:

$$
\left(u^{i}, u^{a}\right)=\left(f^{i} \rho^{i}, 0\right)
$$

relations between distinct integral topologies

- Mixed:

$$
\left(u^{i}, u^{a}\right)=\left(f^{i} \rho^{i}, u^{a}\right)
$$

massless integrals, D-dependent relations

Tracking Polynomials

Are vectors polynomial when transformed back to momentum space?

Use redundant set of coordinates with constraints => simple to keep track of polynomial structure.

Loop-momentum polynomials are polynomials in new coordinates.

Irreducible scalar products given by polynomials in alpha-coordinates.

(I) $\ell_{l}=\sum_{j \in B_{i}^{l}} v_{i}^{j}{ }^{l j}+\sum_{j \in B_{i}} v_{i}^{j} \alpha^{i j}+\sum_{i \in B^{a}} n^{i} \alpha^{i+}+\sum_{i \in B^{i}} n^{i} \mu_{i}^{i}$
(2) I.p: $\left.r^{i i}=-\frac{1}{2}\left(\rho_{l i}-\left(q_{i l}\right)^{2}-\rho_{l(i-1)}+\left(q_{l i-1}\right)\right)^{2}\right)$

$$
\begin{equation*}
c_{l}:=\left(\ell_{l}\right)^{2}-\rho_{l 0}=\left.\left(\ell_{l}\right)^{2}\right|_{4 D}-\mu_{l}^{2}-\rho_{l 0}=0 \tag{3}
\end{equation*}
$$

(4)

$$
t^{\mu_{1} \ldots \mu_{k}} \ell_{\mu_{1}} \cdots \ell_{\mu_{k}} \quad \sim
$$

($\rho, \alpha)$ - polynomials

Constraints on Vectors

Vectors have to map polynomials to polynomials => polynomial components.

Symmetric in (D-4) dimensional part.
Vectors have to point along physical momentum space.

Simplest form when solving for $\mu_{l l}$'s.
=> quadratic equations for polynomial vector components. Solve for u's and f's.
(I) Symmetric IBP generating vector:

$$
\begin{gathered}
u=f_{i} \rho_{i} \frac{\partial}{\partial \rho_{i}}+u_{j} \frac{\partial}{\partial \alpha^{j}}+\sum_{l, l^{\prime}=1,2} f_{l^{\prime}, \mu_{l}^{k}} \frac{\partial}{\partial \mu_{l^{\prime}}^{k}} \\
\bigsqcup_{\bar{u}}
\end{gathered}
$$

(2) Syzygy equations from $u\left(c_{l}\right) \sim 0$

$$
\begin{aligned}
& \bar{u}\left(\mu_{11}\right)=2 \mu_{11} f_{1}^{1}+2 \mu_{12} f_{1}^{2}, \\
& \bar{u}\left(\mu_{22}\right)=2 \mu_{22} f_{2}^{2}+2 \mu_{12} f_{2}^{1}, \\
& \bar{u}\left(\mu_{12}\right)=\mu_{12}\left(f_{1}^{1}+f_{2}^{2}\right)+\mu_{11} f_{2}^{1}+\mu_{22} f_{1}^{2} .
\end{aligned}
$$

Solve IBP Reduction?

IBP-generating vectors:

- Rotation/scaling/translation generators for each rung, consistent with momentum conservation at vertices.
- Can we write down all solutions and solve integral reduction?

Geometric structures:

- Lie-algebra \& representation theory:

$$
\left[u_{a}, u_{b}\right]=f_{a b}^{c}\left(\ell, p_{i}\right) u_{c}
$$

- Numerators are representations space.
- 'Highers weight' representation are master integrals

Numerator polynomials:

On-shell Linear Algebra

Cutting loop integral:

$$
\int \frac{t}{\rho^{1} \cdots \rho^{N}} J[d \alpha d \rho] \quad \xrightarrow{\text { cut }} \int t J[d \alpha]
$$

IBP-relations give exact forms on shell [HII5]:

$$
\int\left[\left(\sum_{i} \frac{\rho^{i} \partial_{i}\left(f^{i} J\right)}{\rho^{1} \cdots \rho^{N}}\right)+\left(\frac{\partial_{a}\left(u^{a} J\right)}{\rho^{1} \cdots \rho^{N}}\right)\right][d \alpha d \rho] \xrightarrow{\text { cut }} \int \partial_{a}\left(u^{a} J\right)[d \alpha]
$$

holomorphic form

Master integrands:

- Relevant IBPs don't vanish on cut - can check linear dependence on-shell
- $\quad($ holomorphic forms $)$ modulo (exact forms) $=$ (cohomology of unitarity cut variety) [HI I5; Larsen, Zhang I5]. - see talk by Yang Zhang

Topological count gives
master integrands

Surface-Term Numerators

Given the IBP-generating vectors we obtain all surfaces terms.

Large part of surface terms given by rotations transverse to full scattering plane or sub loops (can be written down by hand).

Singularities of surface give conformal scaling vectors; global continuation hard - role syzygy equations.

Transverse relations:

$$
\begin{aligned}
& \alpha^{l j}{l^{\prime} j}^{\prime^{\prime}}-b_{1} \frac{\mu_{l l^{\prime}}}{D-4}, \quad l, l^{\prime} \in\{1,2\}, \\
& \left(\alpha^{l j}\right)^{2}\left(\alpha^{l^{\prime} j}\right)^{2}-b_{1} \frac{\mu_{l l}}{D-4}\left(\alpha^{l^{\prime} j}\right)^{2}-b_{2} \frac{\mu_{l l^{\prime}}}{D-4} \alpha^{l j} \alpha^{l^{\prime} j}, l \neq l^{\prime}
\end{aligned}
$$

Generic \& scaling relations:

$$
\begin{aligned}
m_{\Gamma, u}\left(\ell_{l}\right)= & {\left[-\left(\nu_{i}-1\right) f_{i}+\rho_{i} \frac{\partial f_{i}}{\partial \rho_{i}}+\frac{\partial u_{j}}{\partial \alpha^{j}}+\right.} \\
& \left.\left(D-\frac{n_{\alpha}+1}{2}\right)\left(f_{1}^{1}+f_{2}^{2}\right)\right]
\end{aligned}
$$

D-dependence very explicit.

Example count for double box:

masters	tensors	transverse relations	generic relations	scaling relations
5-s	160	138	17	s
	easy	easy	easy	hard

Proof of Principle

Proof of principle: 4-gluon 2-loop amplitudes:

- Much of QCD complexity turned on.

First computed by [Glover, Oleari, Tejeda-Yeomans OI; Bern, Dixon, de Freitas 02];

- Analytic results reconstructed from numerics at high precision.

aonciusions

Presented first two-loop computation with numerical unitarity approach:

- Discussed central ingredient the surface terms
- Numerical approach: computer-cluster compatible
- Exact: analytic reconstruction

Potential:

- Current status suggests good for adding scales (legs/masses)

Geometry backbone to `unitarity approach':

- Unitarity-cut phase spaces
- Natural coordinates adapted to integrals, log-vector fields
- Classification of IBP-generating vectors

Geometry \& Unitarity

Unitarity approach:

- Discontinuities of loop amplitudes localise integral on (cycles of) on-shell phase spaces.
- Similarly, integrands factorise for on-shell loop momenta.

Integral perspective:

- Questions modulo pinching lines, defines polynomial ideal of irrelevant terms and thus algebraic varieties.

Ongoing amplitudes field [Chew, Mandelstam; Eden, Landshoff, Olive, Polkinghorne;Veneziano; Virasoro, Shapiro; ...Bern, Dixon, Dunbar,
Kosover; Arkani-Hammed, Cachazo, ... amplitudes community]

Recent years [Badger, Frellesvig, Zhang; Mastrolia, Mirabella, Ossola, Peraro]

```
Recently [Abreu, Britto, Caron-
Huot, Duhr, Gardi, Georgoudis, HI,
Kosower, Larsen, Sogaard, Zeng,
Zhang]
```

