
Numerical Unitarity Method for Two-loop 
Amplitudes in QCD

Harald Ita 

University of Freiburg, Germany 

Loopfest 2017, May 31- June 2, Argonne National 
Laboratory

MWK

based on work with S. Abreu,  F. Febres Cordero, 
M. Jaquier,  B. Page (Freiburg);  M. Zeng (UCLA)



Content

Motivation

Unitarity Method @ 2-Loops

Geometric Properties



LHC Motivation
Taken from Rolf Heuer in CERN General Meeting January 2013.

(LS = Long Shutdown)

An overview of the expected measurement precision in each channel for the signal strength
µ with respect to the Standard Model Higgs boson expectation for a mass of 125 GeV is given in
Figure 8.2(a) for assumed integrated luminosities of 300 fb�1 and 3000 fb�1.
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Figure 8.2: (a): Expected measurement precision on the signal strength µ = (s ⇥BR)/(s ⇥BR)SM in
all considered channels. (b): Expected measurement precisions on ratios of Higgs boson partial widths
without theory assumptions on the particle content in Higgs loops or the total width. In both figures, the
bars give the expected relative uncertainty for a Standard Model Higgs boson with a mass of 125 GeV (the
dashed areas include current theory uncertainties from QCD scale and PDF variations [95]) for luminosities
of 300 fb�1 and 3000 fb�1. For the tt final state the thin brown bars show the expected precision reached
from extrapolating all tt channels studied in the current 7 and 8 TeV analysis to 300fb�1, instead of using
the dedicated studies at 300 fb�1 and 3000 fb�1 that are based only on the VBF H ! tt channels.

The gg and ZZ⇤ final states profit most from the high luminosity, as both statistical and sys-
tematic uncertainties (which are dominated by the number of events in the sideband) are reduced
considerably. The gg final state is especially important, as this final state can be used as a clean
probe of all initial states and associated couplings accessible to the LHC.

In the tt channels, dedicated studies were done only for the VBF production of the H !
tleptlep and H ! tlepthad final states, where tlep (thad) denotes a leptonically (hadronically) de-
caying t . However, especially for the tt channels, the combination of dedicated analyses targeted
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Potential: new physics & percent-level cross sections.  



A Theory Aim

[Antenna subtraction; Gehrmann-De Ridder, Gehrmann, 
Glover; Kosower] 

Precise predictions are a 
multi-layered problem:

diagram
 from

 G
. Salam

Complex dynamic of proton collisions:
Percent-level precision target often requires 
NNLO in QCD.

Many 2-to-2 processes known @ NNLO. 

Can we add recoiling jet to signature final states in 
order to access kinematic dependence? Can we 
add mass effects?

Benchmark processes:

• Pure QCD amplitudes; 4-point [Glover, Oleari Tejeda-

Yeomans 01; Bern Freitas Dixon 02]  — see Ben Page’s talk

• 5/6-point pure QCD first results:  [Badger, Frellesvig, 
Zhang 15; Gehrmann, Henn, Lo Presti 15; Badger, Mogull, 
Perabo 16; Dunbar, Jehu, Perkins 16]. 

• Loop induced processes, multi-scale processes 



Amplitude computation are complex: Feynman 
diagrams — integral reduction — integration.

• Large intermediate expressions with compacter 
results.

• Can we find simplicity at intermediate steps?

Unitarity method:

• Exploits additional properties of amplitudes (on-
shell & geometry) 

• Numerical approach: suitable for multi-scale 
problems, e.g. W+5jets @ NLO.

• First spin off: classification of integral relations — 
see Yang Zhang’s and Mao Zeng’s talks

Why Unitarity Approach?
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FIG. 7: The pT distributions of the leading five jets in W+ + 5-jet production at the LHC at
√
s = 7 TeV.

Jets
W+/W−

W− + n

W− + (n−1)

W+ + n

W+ + (n−1)

LO NLO LO NLO LO NLO

1 1.467(0.002) 1.47(0.01) — — — —

2 1.552(0.002) 1.50(0.01) 0.2949(0.0003) 0.238(0.001) 0.3119(0.0005) 0.242(0.002)

3 1.651(0.003) 1.61(0.01) 0.2511(0.0005) 0.220(0.001) 0.2671(0.0004) 0.235(0.002)

4 1.753(0.006) 1.72(0.03) 0.2345(0.0008) 0.211(0.003) 0.2490(0.0005) 0.225(0.003)

5 1.864(0.008) 1.87(0.06) 0.218(0.001) 0.200(0.006) 0.2319(0.0008) 0.218(0.006)

TABLE II: The first two columns give cross-section ratios for W+ production to W− production,

as a function of the number of associated jest. The last two columns give the ratios of the cross

section for the given process to that with one fewer jet. The numerical integration uncertainty is

in parentheses.

to vector-boson production, and also increases the u(x)/d(x) ratio. The case of W + 1-jet

production is special, because the gg initial state is absent at LO. In general, the gg initial
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Some key multi-loop methods: tensor 
reduction [Tarasov 96; Anastasiou, Glover, 
Oleari 99], Integration-by-parts identities 
[Tkachov, Chetyrkin 81],  Lorentz invariance 
identities [Gehrmann, Remiddi 99], Laporta 
algorithm [Laporta 01]

[BlackHat; Bern, Dixon, Febres Cordero, HI, 
Kosower, Maitre, ‘13]



Hidden Geometry
Coordinate change exposes fiber 
structure:

Functional dependence on internal spaces 
important for full integral.

One loop example: internal spaces are 
spheres; all non-constant harmonic 
functions integrate to zero = IBP relations.

Integrate over fibers first

Integration region 
from part of Landau 
equations

See also: ‘The Analytic S-Matrix’, 
Eden, Landshoff, Olive, Polkinhorne; 
Baikov; HI; Zhang Larsen

Geometry comes with natural structures:

• Function ring => irreducible numerators; tangent vectors => IBP relations

• Cohomology => master integrals; moduli spaces & connections  => differential 
equations



Amplitude master equation:

Universal analytic properties of amplitudes imply:

Simpler equations & simpler on-shell input.

The Unitarity Method

Multi-loop pioneers [Bern, Dixon, 
Kosower, Dunbar 94;  Bern, Dixon, 
Dunbar, Perelstein, Rozowsky 98; Bern, 
Dixon, Kosower 00]

Recent work on duality of master 
integrals & contours [Kosower, 
Larsen 11; Caron-Huot, Larsen 12; 
Georgoudis, Zhang 15; Sogaard, 
Zhang 14; HI 15; Harley, Moriello, 
Schabinger; Bosma, Sogaard, Zhang; 
Primo, Tancredi 17]

C :

Z

C
[dLIPS] Ã1(`, pi)⇥ · · ·⇥ Ãm(`, pi)

=

X

integrals with cuts

cj(pi)

Z

C
[dLIPS]

mj(`, pi)

(uncut propagator terms)

A(pi) =

Z
[d(nD)`] Ã(`, pi)

Z
[d(nD)`]

mj(`, pi)

⇢1 · · · ⇢N
A(pi) =

X

integral basis

cj(pi) Ij(pi)

Bootstrap program: [Chew, 
Mandelstam; Eden, Landshoff, Olive, 
Polkinghorne; Veneziano;  Virasoro, 
Shapiro; …]



Use integrand basis and remove integration:

Factorisation in loop momenta [Ellis, Giele, Kunszt]:

Algebraic equations using tree-level data:

Properties: 

• Universal and numerical

• But: additional integral reduction required

Unitarity Approach - Integrands
Classification of integrands 
[Badger, Frellesvig, Zhang. 13; 
Mastrolia, Mirabella, Ossola, 
Peraro 12]

Ã(`, pi) =
X

j in integrand basis

cj(pi)
mj(`, pi)

⇢1 · · · ⇢N

˜A1(`, pi)⇥ · · ·⇥ ˜Am(`, pi) =
X

j in large integrands

cj(pi)mj(`, pi)

+ previously computed topologies

lim

{⇢i}!0

˜A(`, pi) ! ˜A1(`, pi)⇥ · · ·⇥ ˜Am(`, pi)
1

(large propagator terms)



Integrand decomposition into masters integrands and 
vanishing integrals:

Algebraic `cut equations’ suitable for numerics (& analytic 
computations): 

Two-in-one approach: obtain coefficients & reduction. No 
additional integral reduction required — just drop surface 
terms.

Numerical Unitarity Method
@ one-loop [Ossola 
Papadopoulos, Pittau 07; Ellis, 
Giele Kunszt 07; Giele Kunszt, 
Melnikov 08]

@ two/multi-loop [HI15]

use IBPs

˜A1(`, pi)⇥ · · ·⇥ ˜Am(`, pi) =
X

j in large integrands

cj(pi)mj(`, pi)

+ previously computed topologies

Ã(`, pi) =
X

j inmaster integrands

cj(pi)
mj(`, pi)

⇢1 · · · ⇢N +
X

j in surface terms

ĉj(pi)
m̂j(`, pi)

⇢1 · · · ⇢N



Vanishing integrals given as integration-by-
parts identities [HI 15].  A generalisation of 
[Aguila, Ossola, Papadopoulos, Pittau 04; Ellis, Giele, Kunszt 
07]

Need to control propagator powers for 
compatibility with unitarity equations => 
IBP-generating vectors u (see eqns).

Geometric interpretation [HI 15, see similar 

Zhang 14]:

• Particular vector fields in momentum 
space which become tangent to 
unitarity-cut surface — see Mao Zeng’s talk

Surface Terms

[Gluza, Kajda, Kosower 10]

 [Tkachov, Chetyrkin 81]

@µ

✓
uµ

⇢i

◆
=

1

⇢i
@µu

µ � 1

(⇢i)2
uµ@µ⇢

i

Unitarity-cut surface 
and  IBP-generating 

vector field:



Work at individual propagator structures.

General coordinate transformation [HI 15; 
Larsen, Zhang 15].

Additional constraint for polynomial vector 
fields => syzygy equations.

Explicit solutions for planar topologies with 
generic mass assignments [HI 15].

Special cases solved with Singular-program. 
Other approaches using computer algebra 
[Gluza, Kajda, Kosower 10; Schabinger 11]. 

Natural Coordinates

inverse propagators

auxiliary coordinates

(2)

(3)

(1)



Classification of IBP-generating vectors:

• Horizontal:

• Vertical:

• Mixed:

Classification of IBP 
relations

(ui, ua) = (0, ua)
relations within 

integral topology

(ui, ua) = (f i⇢i, 0)
relations between distinct 

integral topologies

(ui, ua) = (f i⇢i, ua)
massless integrals, 

D-dependent relations

ua

ui = ⇢if i

foliation of momentum space 
in      = const. slices {⇢i = 0}

vertical

horizontal



Are vectors polynomial when transformed 
back to momentum space?

Use redundant set of coordinates with 
constraints => simple to keep track of 
polynomial structure.

Loop-momentum polynomials are 
polynomials in new coordinates.

Irreducible scalar products given by 
polynomials in alpha-coordinates.

(4)

(1)

tµ1...µk`µ1 · · · `µk ⇠ (⇢,↵)� polynomials

tµ1...µk`µ1 · · · `µk ⇠ (⇢,↵)� polynomials

(3)

Tracking Polynomials

l.p:(2)



Vectors have to map polynomials to 
polynomials => polynomial components.

Symmetric in (D-4) dimensional part.

Vectors have to point along physical 
momentum space.

Simplest form when solving for      ’s.

=> quadratic equations for polynomial 
vector components. Solve for u’s and f ’s.

Constraints on Vectors

(⇢,↵)

`µ

momentum space

auxiliary space

(1) Symmetric IBP generating vector:

(2) Syzygy equations from 



IBP-generating vectors:

• Rotation/scaling/translation generators for each 
rung, consistent with momentum conservation at 
vertices.

• Can we write down all solutions and solve integral 
reduction?

Geometric structures:

• Lie-algebra & representation theory:

• Numerators are representations space.

• ‘Highers weight’ representation are master 
integrals

Solve IBP Reduction?

Numerator polynomials:

power
counting

u

u’

master integrands
[ua, ub] = f c

ab(`, pi)uc



On-shell Linear Algebra

Cutting loop integral:

IBP-relations give exact forms on shell [HI15]:

Master integrands: 

• Relevant IBPs don’t vanish on cut — can check 
linear dependence on-shell

• (holomorphic forms) modulo (exact forms) = 
(cohomology of unitarity cut variety) [HI 15; Larsen, 
Zhang 15]. — see talk by Yang Zhang

Topological count gives
master integrands

Z " 
X

i

⇢i@i(f i J)

⇢1 · · · ⇢N

!
+

✓
@a(ua J)

⇢1 · · · ⇢N

◆#
[d↵d⇢] cut�!

Z
@a(u

a J)[d↵]

Z
t

⇢1 · · · ⇢N J [d↵d⇢]
cut�!

Z
t J [d↵]

holomorphic form

exact holomorphic form



Given the IBP-generating vectors we obtain all 
surfaces terms.

Large part of surface terms given by rotations 
transverse to full scattering plane or sub loops 
(can be written down by hand).

Singularities of surface give conformal scaling 
vectors; global continuation hard — role syzygy 
equations.

D-dependence very explicit.

Surface-Term Numerators
Transverse relations:

Generic & scaling relations:

Example count for double box:

easy hardeasyeasy



Proof of Principle

Proof of principle: 4-gluon 2-loop amplitudes:

• Much of QCD complexity turned on.

• Analytic results reconstructed from numerics at high precision.

First computed by [Glover, 
Oleari, Tejeda-Yeomans 01; 
Bern, Dixon, de Freitas 02];

see Ben Page’s talk



Conclusions
Presented first two-loop computation with numerical unitarity approach:

• Discussed central ingredient the surface terms 

• Numerical approach: computer-cluster compatible

• Exact: analytic reconstruction

Potential:

• Current status suggests good for adding scales (legs/masses)

Geometry backbone to `unitarity approach':

• Unitarity-cut phase spaces

• Natural coordinates adapted to integrals, log-vector fields

• Classification of IBP-generating vectors





Unitarity approach:

• Discontinuities of loop amplitudes localise integral on 
(cycles of) on-shell phase spaces. 

• Similarly, integrands factorise for on-shell loop momenta.

Integral perspective: 

• Questions modulo pinching lines, defines polynomial 
ideal of irrelevant terms and thus algebraic varieties.

Geometry & Unitarity

C :

Recent years [Badger, Frellesvig, 
Zhang; Mastrolia, Mirabella, 
Ossola, Peraro]

Ongoing amplitudes field [Chew, 
Mandelstam; Eden, Landshoff, Olive, 
Polkinghorne; Veneziano;  Virasoro, 
Shapiro; …Bern, Dixon, Dunbar, 
Kosover;  Arkani-Hammed, Cachazo, 
… amplitudes community]

Recently [Abreu, Britto, Caron-
Huot, Duhr, Gardi, Georgoudis, HI,  
Kosower, Larsen, Sogaard, Zeng, 
Zhang]


