

The Proton Radius Puzzle

Gil Paz

Department of Physics and Astronomy, Wayne State University

Introduction: The proton radius puzzle

Form Factors

• Matrix element of EM current between nucleon states give rise to two form factors $(q = p_f - p_i)$

$$\langle N(p_f)|\sum_{q} e_q \,\bar{q}\gamma^{\mu}q|N(p_i)\rangle = \bar{u}(p_f) \left[\gamma^{\mu}F_1(q^2) + \frac{i\sigma_{\mu\nu}}{2m}F_2(q^2)q^{\nu}\right]u(p_i)$$

Sachs electric and magnetic form factors

$$G_E(q^2) = F_1(q^2) + \frac{q^2}{4m_p^2}F_2(q^2) \qquad G_M(q^2) = F_1(q^2) + F_2(q^2)$$
$$G_E^p(0) = 1 \qquad \qquad G_M^p(0) = \mu_p \approx 2.793$$

• The slope of G_E^p

$$\langle r^2 \rangle_E^p = 6 \frac{dG_E^p}{dq^2} \bigg|_{q^2 = 0}$$

determines the charge radius $r_E^p \equiv \sqrt{\langle r^2 \rangle_E^p}$

The proton *magnetic* radius

$$\langle r^2 \rangle_M^p = \frac{6}{G_M^p(0)} \frac{dG_M^p(q^2)}{dq^2} \Big|_{q^2 = 0}$$

• Lamb shift in muonic hydrogen [Pohl et al. Nature 466, 213 (2010)] $r_E^p = 0.84184(67)$ fm

more recently $r_E^p = 0.84087(39)$ fm [Antognini et al. Science 339, 417 (2013)]

• CODATA value [Mohr et al. RMP 80, 633 (2008)] $r_E^p = 0.87680(690)$ fm

more recently $r_E^{\rho} = 0.87510(610)$ fm [Mohr et al. RMP 88, 035009 (2016)] extracted mainly from (electronic) hydrogen

- 5σ discrepancy!
- This is the proton radius puzzle

• What could the reason for the discrepancy?

- What could the reason for the discrepancy?
- 1) Problem with the electronic extraction? (Part 1 of this talk)

- What could the reason for the discrepancy?
- 1) Problem with the electronic extraction? (Part 1 of this talk)
- 2) Hadronic Uncertainty? (Part 2 of this talk)

- What could the reason for the discrepancy?
- 1) Problem with the electronic extraction? (Part 1 of this talk)
- 2) Hadronic Uncertainty? (Part 2 of this talk)
- 3) New Physics?

Outline

- Introduction: The proton radius puzzle
- Part 1: Proton radii from scattering
- Part 2: Hadronic Uncertainty?
- Backup slides: Connecting μp scattering and muonic hydrogen
- Conclusions and outlook

Part 1: Proton radii from scattering

Problem with the electronic extraction?

- Recent development: use of the *z* expansion based on known analytic properties of form factors
- The method for meson form factors [Flavor Lattice Averaging Group, EPJ C 74, 2890 (2014)]
- Now applied successfully to baryon form factors to extract r^p_E, r^p_M, rⁿ_M, m_A...

PDG 2016: *r*_E^p

Citation: C. Patrignani et al. (Particle Data Group), Chin. Phys. C, 40, 100001 (2016)

p CHARGE RADIUS

This is the rms electric charge radius, $\sqrt{\langle r_E^2 \rangle}$.

VALUE (fm)	DOCUMENT ID		TECN	COMMENT
0.8751 ±0.0061	MOHR	16	RVUE	2014 CODATA value
$0.84087 \pm 0.00026 \pm 0.00029$	ANTOGNINI	13	LASR	μp -atom Lamb shift
• • • We do not use the following	ng data for avera	ges, fi	its, limits	, etc. • • •
$0.895 \pm 0.014 \pm 0.014$	¹ LEE	15	SPEC	Just 2010 Mainz data
0.916 ±0.024	LEE	15	SPEC	World data, no Mainz
0.8775 ±0.0051	MOHR	12	RVUE	2010 CODATA, ep data
$0.875 \pm 0.008 \pm 0.006$	ZHAN	11	SPEC	Recoil polarimetry
$0.879 \pm 0.005 \pm 0.006$	BERNAUER	10	SPEC	$e p \rightarrow e p$ form factor
$0.912 \pm 0.009 \pm 0.007$	BORISYUK	10		reanalyzes old <i>e p</i> data
$0.871 \pm 0.009 \pm 0.003$	HILL	10		z-expansion reanalysis
$0.84184 \!\pm\! 0.00036 \!\pm\! 0.00056$	POHL	10	LASR	See ANTOGNINI 13
0.8768 ± 0.0069	MOHR	08	RVUE	2006 CODATA value
$0.844 \begin{array}{c} +0.008 \\ -0.004 \end{array}$	BELUSHKIN	07		Dispersion analysis
0.897 ±0.018	BLUNDEN	05		SICK 03 + 2 γ correction
0.8750 ± 0.0068	MOHR	05	RVUE	2002 CODATA value
$0.895 \pm 0.010 \pm 0.013$	SICK	03		$e p \rightarrow e p$ reanalysis

[Hill, GP PRD **82** 113005 (2010)] [Lee, Arrington, Hill, PRD **92**, 013013 (2015)]

PDG 2016: *r*^p_M

Citation: C. Patrignani et al. (Particle Data Group), Chin. Phys. C, 40, 100001 (2016)

p MAGNETIC RADIUS

This is the rms magnetic radius, $\sqrt{\langle r_M^2 \rangle}$.

VALUE (fm)	DOCUMENT ID		TECN	COMMENT
0.776±0.034±0.017	¹ LEE	15	SPEC	Just 2010 Mainz data
• • • We do not use the foll	owing data for a	verag	es, fits, l	imits, etc. • • •
0.914 ± 0.035	LEE	15	SPEC	World data, no Mainz
0.87 ± 0.02	EPSTEIN	14		Using ep, en, $\pi\pi$ data
$0.867 \pm 0.009 \pm 0.018$	ZHAN	11	SPEC	Recoil polarimetry
$0.777 \pm 0.013 \pm 0.010$	BERNAUER	10	SPEC	$e p \rightarrow e p$ form factor
$0.876 \!\pm\! 0.010 \!\pm\! 0.016$	BORISYUK	10		Reanalyzes old $e p \rightarrow e p$ data
0.854 ± 0.005	BELUSHKIN	07		Dispersion analysis

¹Authors also provide values for a combination of all available data.

[Epstein, GP, Roy PRD **90**, 074027 (2014)] [Lee, Arrington, Hill, PRD **92**, 013013 (2015)]

PDG 2016: *r*ⁿ_M

Citation: C. Patrignani et al. (Particle Data Group), Chin. Phys. C, 40, 100001 (2016)

n MAGNETIC RADIUS

This is the rms magnet	ic radius, $\sqrt{\langle r_M^2 \rangle}$.		
VALUE (fm)	DOCUMENT ID		COMMENT
0.864 ^{+0.009} _0UR AVERAGE			
0.89 ±0.03	EPSTEIN	14	Using <i>e p</i> , <i>e n</i> , ππ data
$0.862 \substack{+0.009 \\ -0.008}$	BELUSHKIN	07	Dispersion analysis

[Epstein, GP, Roy PRD 90, 074027 (2014)]

Part 2: Hadronic Uncertainty?

[Hill, GP PRD 95, 094017 (2017), arXiv:1611.09917]

The bottom line

- Scattering:
- World e p data [Lee, Arrington, Hill '15] $r_E^p = 0.918 \pm 0.024$ fm
- Mainz e p data [Lee, Arrington, Hill '15] $r_E^p = 0.895 \pm 0.020$ fm
- Proton, neutron and π data [Hill , GP '10] $r_E^p = 0.871 \pm 0.009 \pm 0.002 \pm 0.002$ fm
- Muonic hydrogen
- [Pohl et al. Nature **466**, 213 (2010)] $r_{E}^{p} = 0.84184(67)$ fm
- [Antognini et al. Science **339**, 417 (2013)] $r_{F}^{p} = 0.84087(39)$ fm
- The bottom line:

using z expansion scattering disfavors muonic hydrogen

• Is there a problem with muonic hydrogen theory?

Muonic hydrogen theory

- Is there a problem with muonic hydrogen theory?
- Potentially yes! [Hill, GP PRL 107 160402 (2011)]
- Muonic hydrogen measures ΔE and translates it to r_F^p
- [Pohl et al. Nature **466**, 213 (2010) Supplementary information] $\Delta E = 206.0573(45) - 5.2262(r_E^p)^2 + 0.0347(r_E^p)^3 \text{ meV}$
- [Antognini et al. Science **339**, 417 (2013), Ann. of Phy. **331**, 127] $\Delta E = 206.0336(15) 5.2275(10)(r_E^p)^2 + 0.0332(20) \text{ meV}$
- In both cases apart from r_E^p need two-photon exchange

• Apart from r_E^p we have two-photon exchange (TPE)

• Apart from r_E^p we have two-photon exchange (TPE)

$$W^{\mu\nu} = \frac{1}{2} \sum_{s} i \int d^4 x \, e^{iq \cdot x} \langle \mathbf{k}, s | T \{ J^{\mu}_{\text{e.m.}}(x) J^{\nu}_{\text{e.m.}}(0) \} | \mathbf{k}, s \rangle$$
$$= \left(-g^{\mu\nu} + \frac{q^{\mu}q^{\nu}}{q^2} \right) W_1 + \left(k^{\mu} - \frac{k \cdot q \, q^{\mu}}{q^2} \right) \left(k^{\nu} - \frac{k \cdot q \, q^{\nu}}{q^2} \right) W_2$$

• Apart from r_E^p we have two-photon exchange (TPE)

$$W^{\mu\nu} = \frac{1}{2} \sum_{s} i \int d^4 x \, e^{iq \cdot x} \langle \mathbf{k}, s | T \{ J^{\mu}_{\text{e.m.}}(x) J^{\nu}_{\text{e.m.}}(0) \} | \mathbf{k}, s \rangle$$
$$= \left(-g^{\mu\nu} + \frac{q^{\mu}q^{\nu}}{q^2} \right) W_1 + \left(k^{\mu} - \frac{k \cdot q \, q^{\mu}}{q^2} \right) \left(k^{\nu} - \frac{k \cdot q \, q^{\nu}}{q^2} \right) W_2$$

1 1

• Dispersion relations ($\nu=2k\cdot q,\ Q^2=-q^2$)

$$W_1(
u,Q^2) = W_1(0,Q^2) + rac{
u^2}{\pi} \int_{
u_{
m cut}(Q^2)^2}^{\infty} d
u'^2 rac{{
m Im} W_1(
u',Q^2)}{
u'^2(
u'^2-
u^2)}$$

$$W_2(\nu, Q^2) = rac{1}{\pi} \int_{
u_{
m cut}(Q^2)^2}^{\infty} d
u'^2 rac{{
m Im} W_2(
u', Q^2)}{
u'^2 -
u^2}$$

• W₁ requires subtraction...

• Apart from r_F^p we have two-photon exchange (TPE)

• Imaginary part of TPE related to data:

form factors, structure functions

• Apart from r_F^p we have two-photon exchange (TPE)

- Imaginary part of TPE related to data: form factors, structure functions
- Cannot reproduce it from its imaginary part: Dispersion relation requires subtraction
- Need poorly constrained non-perturbative function $W_1(0, Q^2)$

• *Small Q*² limit using NRQED [Hill, GP, PRL **107** 160402 (2011)] The photon sees the proton "almost" like an elementary particle

• *Small Q*² limit using NRQED [Hill, GP, PRL **107** 160402 (2011)] The photon sees the proton "almost" like an elementary particle

$$W_1(0, Q^2) = 2a_p(2+a_p) + \frac{Q^2}{m_p^2} \left\{ \frac{2m_p^3\bar{\beta}}{\alpha} - a_p - \frac{2}{3} \left[(1+a_p)^2 m_p^2 (r_M^p)^2 - m_p^2 (r_E^p)^2 \right] \right\} + \mathcal{O}\left(Q^4\right)$$

• *Small Q*² limit using NRQED [Hill, GP, PRL **107** 160402 (2011)] The photon sees the proton "almost" like an elementary particle

$$W_{1}(0,Q^{2}) = 2a_{p}(2+a_{p}) + \frac{Q^{2}}{m_{p}^{2}} \left\{ \frac{2m_{p}^{3}\bar{\beta}}{\alpha} - a_{p} - \frac{2}{3} \left[(1+a_{p})^{2}m_{p}^{2}(r_{M}^{p})^{2} - m_{p}^{2}(r_{E}^{p})^{2} \right] \right\} + \mathcal{O}\left(Q^{4}\right)$$

-
$$a_p = 1.793$$
, $\beta = 2.5(4) \times 10^{-4}$ fm³
- $r_M = 0.776(34)(17)$ fm,
- $r_E^H = 0.8751(61)$ fm or $r_E^{\mu H} = 0.84087(26)(29)$ fm

$$W_1(0, Q^2) = 13.6 + \frac{Q^2}{m_p^2} (-54 \pm 7) + \mathcal{O}(Q^4)$$

• *Small Q*² limit using NRQED [Hill, GP, PRL **107** 160402 (2011)] The photon sees the proton "almost" like an elementary particle

$$W_{1}(0, Q^{2}) = 2a_{p}(2+a_{p}) + \frac{Q^{2}}{m_{p}^{2}} \left\{ \frac{2m_{p}^{3}\bar{\beta}}{\alpha} - a_{p} - \frac{2}{3} \left[(1+a_{p})^{2}m_{p}^{2}(r_{M}^{p})^{2} - m_{p}^{2}(r_{E}^{p})^{2} \right] \right\} + \mathcal{O}(Q^{4})$$

$$- a_{p} = 1.793, \ \bar{\beta} = 2.5(4) \times 10^{-4} \ \text{fm}^{3}$$

$$- r_{M} = 0.776(34)(17) \ \text{fm},$$

$$- r_{E}^{H} = 0.8751(61) \ \text{fm or } r_{E}^{\mu H} = 0.84087(26)(29) \ \text{fm}$$

$$W_{1}(0, Q^{2}) = 13.6 + \frac{Q^{2}}{m_{p}^{2}}(-54 \pm 7) + \mathcal{O}(Q^{4})$$

Q²(GeV²)

Two Photon Exchange: large Q^2 limit

• Calculable in *large Q²* limit using Operator Product Expansion (OPE) [J. C. Collins, NPB **149**, 90 (1979)]

The photon "sees" the quarks and gluons inside the proton

$$W_1(0,Q^2) = c/Q^2 + \mathcal{O}\left(1/Q^4\right)$$

- Result was used to estimate two photon exchange effects
- c calculated in [J. C. Collins, NPB 149, 90 (1979)]

RENORMALIZATION OF THE COTTINGHAM FORMULA

John C. COLLINS * Joseph Henry Laboratories, Princeton University, Princeton, New Jersey 08540, USA

Received 23 October 1978

Two Photon Exchange: large Q^2 limit

• Calculable in *large Q²* limit using Operator Product Expansion (OPE) [J. C. Collins, NPB **149**, 90 (1979)]

The photon "sees" the quarks and gluons inside the proton

$$W_1(0,Q^2)=c/Q^2+\mathcal{O}\left(1/Q^4
ight)$$

- Result was used to estimate two photon exchange effects
- c calculated in [J. C. Collins, NPB 149, 90 (1979)]

RENORMALIZATION OF THE COTTINGHAM FORMULA

John C. COLLINS * Joseph Henry Laboratories, Princeton University, Princeton, New Jersey 08540, USA

Received 23 October 1978

• Was it?

Two Photon Exchange: large Q^2 limit

$$W^{\mu\nu} = \frac{1}{2} \sum_{s} i \int d^4 x \, e^{iq \cdot x} \langle \mathbf{k}, s | T \{ J^{\mu}_{\text{e.m.}}(x) J^{\nu}_{\text{e.m.}}(0) \} | \mathbf{k}, s \rangle$$
$$= \left(-g^{\mu\nu} + \frac{q^{\mu}q^{\nu}}{q^2} \right) W_1 + \left(k^{\mu} - \frac{k \cdot q \, q^{\mu}}{q^2} \right) \left(k^{\nu} - \frac{k \cdot q \, q^{\nu}}{q^2} \right) W_2$$

• $W_1(0, Q^2)$ is dimensionless

$$W_1 \sim rac{\langle \mathsf{Proton} | \mathcal{O} | \mathsf{Proton}
angle}{Q^2} + \mathcal{O}\left(rac{1}{Q^4}
ight)$$

• O is a dimension 4 operator:

- Quarks: Spin 0: $m_q \bar{q} q$ Spin 2: $\bar{q} (iD^{\mu}\gamma^{\nu} + iD^{\nu}\gamma^{\mu} - \frac{1}{a}i \not D g^{\mu\nu})q$

- Gluons: must be color singlet: $G_a^{\alpha\beta}G_a^{\rho\sigma}$
- What gluon operators can we have?

• Gluons: must be color singlet $G_a^{\alpha\beta}G_a^{\rho\sigma}$ A product of (E^i, B^i) and (E^j, B^j) has $7 \times 6/2 = 21$ components:

- $G_{a}^{\alpha\beta}G_{a}^{\rho\sigma}$ • Gluons: must be color singlet A product of (E^i, B^i) and (E^j, B^j) has $7 \times 6/2 = 21$ components: - 1 scalar: $G^{\mu\nu}G_{\mu\nu} = 2(\vec{B}^2 - \vec{E}^2)$

- Gluons: must be color singlet $G_a^{\alpha\beta}G_a^{\rho\sigma}$ A product of (E^i, B^i) and (E^j, B^j) has $7 \times 6/2 = 21$ components:
- 1 scalar: $G^{\mu
 u}G_{\mu
 u} = 2(\vec{B}^2 \vec{E}^2)$
- 1 pseudo scalar: $\epsilon_{\alpha\beta\rho\sigma}G^{\alpha\beta}G^{\rho\sigma} = E \cdot B$: ruled out by parity

- Gluons: must be color singlet $G_a^{\alpha\beta}G_a^{\rho\sigma}$ A product of (E^i, B^i) and (E^j, B^j) has $7 \times 6/2 = 21$ components:
- 1 scalar: $G^{\mu
 u}G_{\mu
 u} = 2(ec{B^2} ec{E^2})$
- 1 pseudo scalar: $\epsilon_{lphaeta
 ho\sigma}G^{lphaeta}G^{
 ho\sigma}=E\cdot B$: ruled out by parity
- 9 components of traceless symmetric tensor: $G^{\mu\alpha}G^{\nu}_{\alpha} \frac{1}{4}G^{\alpha\beta}G_{\alpha\beta}g^{\mu\nu}$ chromomagnetic stress-energy tensor
- What else?

- Gluons: must be color singlet $G_a^{\alpha\beta}G_a^{\rho\sigma}$ A product of (E^i, B^i) and (E^j, B^j) has $7 \times 6/2 = 21$ components:
- 1 scalar: $G^{\mu
 u}G_{\mu
 u} = 2(ec{B^2} ec{E^2})$
- 1 pseudo scalar: $\epsilon_{lphaeta
 ho\sigma}G^{lphaeta}G^{
 ho\sigma}=E\cdot B$: ruled out by parity
- 9 components of traceless symmetric tensor: $G^{\mu\alpha}G^{\nu}_{\alpha} \frac{1}{4}G^{\alpha\beta}G_{\alpha\beta}g^{\mu\nu}$ chromomagnetic stress-energy tensor
- What else? 10 components of

- Gluons: must be color singlet $G_a^{\alpha\beta}G_a^{\rho\sigma}$ A product of (E^i, B^i) and (E^j, B^j) has $7 \times 6/2 = 21$ components:
- 1 scalar: $G^{\mu\nu}G_{\mu\nu} = 2(\vec{B}^2 \vec{E}^2)$
- 1 pseudo scalar: $\epsilon_{lphaeta
 ho\sigma}G^{lphaeta}G^{
 ho\sigma}=E\cdot B$: ruled out by parity
- 9 components of traceless symmetric tensor: $G^{\mu\alpha}G^{\nu}_{\alpha} \frac{1}{4}G^{\alpha\beta}G_{\alpha\beta}g^{\mu\nu}$ chromomagnetic stress-energy tensor
- What else? 10 components of

 $O^{\mu\alpha\nu\beta} = -\frac{1}{4} \left(\epsilon^{\mu\alpha\rho\sigma} \epsilon^{\nu\beta\kappa\lambda} + \epsilon^{\mu\beta\rho\sigma} \epsilon^{\nu\alpha\kappa\lambda} \right) G_{\rho\kappa}G_{\sigma\lambda} - \text{all possible traces}$ For example $O^{0123} = G^{01}G^{23} + G^{03}G^{21} = E^1B^1 - E^3B^3$

- Gluons: must be color singlet $G_a^{\alpha\beta}G_a^{\rho\sigma}$ A product of (E^i, B^i) and (E^j, B^j) has $7 \times 6/2 = 21$ components:
- 1 scalar: $G^{\mu\nu}G_{\mu\nu} = 2(\vec{B}^2 \vec{E}^2)$
- 1 pseudo scalar: $\epsilon_{lphaeta
 ho\sigma}G^{lphaeta}G^{
 ho\sigma}=E\cdot B$: ruled out by parity
- 9 components of traceless symmetric tensor: $G^{\mu\alpha}G^{\nu}_{\alpha} \frac{1}{4}G^{\alpha\beta}G_{\alpha\beta}g^{\mu\nu}$ chromomagnetic stress-energy tensor
- What else? 10 components of

$$O^{\mu\alpha\nu\beta} = -rac{1}{4} \left(\epsilon^{\mulpha
ho\sigma} \epsilon^{
ueta\kappa\lambda} + \epsilon^{\mueta
ho\sigma} \epsilon^{
ulpha\kappa\lambda}
ight) G_{
ho\kappa}G_{\sigma\lambda} - ext{all possible traces}$$

For example $O^{0123} = G^{01}G^{23} + G^{03}G^{21} = E^1B^1 - E^3B^3$

• For protons: $\langle Proton | O^{\mu\alpha\nu\beta} | Proton \rangle = 0$ What about $\langle Medium | O^{\mu\alpha\nu\beta} | Medium \rangle$? Solution looking for a problem...

Summary: Possible operators

- In total we have four operators with non-zero proton matrix elements.
- Quarks:
- Spin 0: m_qqq
- Spin 2: $\bar{q}(iD^{\mu}\gamma^{\nu}+iD^{\nu}\gamma^{\mu}-\frac{1}{4}i\not\!\!\!D\,g^{\mu\nu})q$
- Gluons:
- Spin 0: $G^{\mu\nu}G_{\mu\nu}$

- Spin 2:
$$G^{\mu\alpha}G^{\nu}_{\alpha} - \frac{1}{4}G^{\alpha\beta}G_{\alpha\beta}g^{\mu\nu}$$

Summary: Possible operators

- In total we have four operators with non-zero proton matrix elements.
- Quarks:
- Spin 0: m_qqq
- Spin 2: $\bar{q}(iD^{\mu}\gamma^{\nu}+iD^{\nu}\gamma^{\mu}-\frac{1}{4}i\not\!\!D\,g^{\mu\nu})q$
- Gluons:
- Spin 0: $G^{\mu\nu}G_{\mu\nu}$

- Spin 2:
$$G^{\mu\alpha}G^{\nu}_{\alpha} - \frac{1}{4}G^{\alpha\beta}G_{\alpha\beta}g^{\mu\nu}$$

RENORMALIZATION OF THE COTTINGHAM FORMULA

John C. COLLINS * Joseph Henry Laboratories, Princeton University, Princeton, New Jersey 08540, USA

Received 23 October 1978

• In 1978 Collins calculated EM corrections to the nucleon mass with an emphasis on $m_n - m_p$

The mass only depends on spin-0 operators (q quark, $G^{\mu\nu}$ gluon)

$\langle P m_q\bar{q}q P\rangle, \qquad \langle P m_q\bar{q}q P\rangle$		$P G^{\mu u}G_{\mu u} P angle$	
	Quark	Gluon	
Spin-0	Collins '78	Collins '78	

• In 1978 Collins calculated EM corrections to the nucleon mass with an emphasis on $m_n - m_p$. The mass only depends on spin 0 operators (a quark $G^{\mu\nu}$ gluon

The mass only depends on spin-0 operators (q quark, $G^{\mu\nu}$ gluon)

$$\langle P|m_q\bar{q}q|P\rangle, \qquad \langle P|G^{\mu\nu}G_{\mu\nu}|P\rangle$$

	Quark	Gluon	
Spin-0	Collins '78	Collins '78	

• For $W_1(0, Q^2)$ you need also spin-2 operators

$$\langle P|\bar{q}(iD^{\mu}\gamma^{\nu}+iD^{\nu}\gamma^{\mu}-\frac{1}{4}i\not Dg^{\mu\nu})q|P\rangle, \qquad \langle P|G^{\mu\alpha}G^{\nu}_{\alpha}-\frac{1}{4}G^{\alpha\beta}G_{\alpha\beta}g^{\mu\nu}|P\rangle$$

• In 1978 Collins calculated EM corrections to the nucleon mass with an emphasis on $m_n - m_p$. The mass only depends on spin 0 operators (a quark $G^{\mu\nu}$ gluon

The mass only depends on spin-0 operators (q quark, $G^{\mu\nu}$ gluon)

$$\langle P|m_q\bar{q}q|P\rangle, \qquad \langle P|G^{\mu\nu}G_{\mu\nu}|P\rangle$$

	Quark	Gluon	
Spin-0	Collins '78	Collins '78	

• For $W_1(0, Q^2)$ you need also spin-2 operators

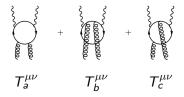
$$\langle P|\bar{q}(iD^{\mu}\gamma^{\nu}+iD^{\nu}\gamma^{\mu}-\frac{1}{4}i\not D g^{\mu\nu})q|P\rangle, \qquad \langle P|G^{\mu\alpha}G^{\nu}_{\alpha}-\frac{1}{4}G^{\alpha\beta}G_{\alpha\beta}g^{\mu\nu}|P\rangle$$

• Need to calculate the spin-2 contribution [Hill, GP arXiv:1611.09917]

	Quark	Gluon	
Spin-0	Collins '78	Collins '78	
Spin-2	Hill, GP '16	Hill, GP '16	

• Collins's result is not enough for muonic hydrogen!

- We calculated all the contributions
- Quark: Tree level matching
- Gluon: 1-loop calculation

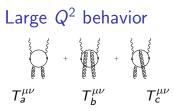


- We calculated all the contributions
- Quark: Tree level matching
- Gluon: 1-loop calculation

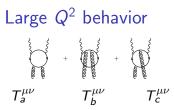


 Use a background field analysis in Fock-Schwinger gauge [Novikov, Shifman, Vainshtein, Zakharov, Fort. Phy. 32, 585 (1984)]

$$T_{c}^{\mu\nu} = -\frac{ig^{2}}{4} \operatorname{Tr}\left[t^{a}t^{b}\right] G_{\rho\alpha}^{a}(0) G_{\sigma\beta}^{b}(0) \sum_{f} e_{f}^{2} \int \frac{d^{d}I}{(2\pi)^{d}} \frac{\partial}{\partial k_{\rho}} \frac{\partial}{\partial k'_{\sigma}}$$
$$\operatorname{Tr}\left[\gamma^{\mu} \frac{1}{J - m_{f}} \gamma^{\alpha} \frac{1}{J - \not{k} - m_{f}} \gamma^{\nu} \frac{1}{J - \not{q} + \not{k'} - m_{f}} \gamma^{\beta} \frac{1}{J - \not{q} - m_{f}}\right]_{k=k'=0}$$

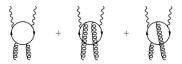


- Set $m_f = 0$ and use dim. reg. for IR divergences: Effective theory loop diagrams vanish Read off matching coefficients from full theory finite pieces See e.g. [Manohar, PRD **56**, 230 (1997)]

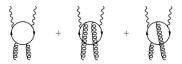


- Set $m_f = 0$ and use dim. reg. for IR divergences: Effective theory loop diagrams vanish Read off matching coefficients from full theory finite pieces See e.g. [Manohar, PRD **56**, 230 (1997)]

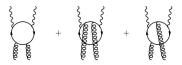
-
$$T_a^{\mu\nu} = T_b^{\mu\nu}$$
 IR divergent, $T_c^{\mu\nu}$ IR finite
 $T_c^{\mu\nu} = \sum_f e_f^2 \frac{g^2}{16\pi^2} \frac{1}{q^2} \times \left[\frac{1}{3} O_g^{(0)} \left(-g^{\mu\nu} + \frac{q^{\mu}q^{\nu}}{q^2} \right) + 2 \frac{q^{\mu}q_{\alpha}}{q^2} O_g^{(2)\alpha\nu} + 2 \frac{q^{\nu}q_{\alpha}}{q^2} O_g^{(2)\alpha\mu} - 4 \frac{q_{\alpha}q_{\beta}}{q^2} O^{\mu\alpha\nu\beta} \right]$
 $\leftarrow \qquad \text{Spin 0} \longrightarrow \leftarrow \qquad \text{Spin 2} \longrightarrow \langle N | O^{\mu\alpha\nu\beta} | N \rangle = 0$
- Only sum of $T_a^{\mu\nu}$, $T_b^{\mu\nu}$ and $T_c^{\mu\nu}$ obeys current conservation



• Performing the complete calculation, we found a mistake in Collins spin-0 calculation from 1978...



- Performing the complete calculation, we found a mistake in Collins spin-0 calculation from 1978...
- Collins didn't calculate the spin-0 gluon contribution directly He extracted it from another calculation



- Performing the complete calculation, we found a mistake in Collins spin-0 calculation from 1978...
- Collins didn't calculate the spin-0 gluon contribution directly He extracted it from another calculation
- For three light quark u, d, sCorrect result: $\sum_{q} e_q^2 = (\frac{2}{3})^2 + (\frac{1}{3})^2 + (\frac{1}{3})^2 = \frac{2}{3}$ Collins: $\sum_{q} = 3$ Too large by a factor of 4.5...

1978:

RENORMALIZATION OF THE COTTINGHAM FORMULA

John C. COLLINS * Joseph Henry Laboratories, Princeton University, Princeton, New Jersey 08540, USA

Received 23 October 1978

2016:

Corrigendum to "Renormalization of the Cottingham formula" [Nucl. Phys. B 149 (1979) 90–100]

John C. Collins

Department of Physics, Penn State University, University Park, PA 16802, USA Received 19 December 2016; accepted 20 December 2016

Acknowledgements

I thank Richard Hill and Gil Paz for pointing out the important error about the coefficient of the gluonic operator, as reported in Ref. [2]. This work was supported in part by the U.S. Department of Energy under Grant No. DE-SC0013699.

References

- [1] J.C. Collins, Renormalization of the Cottingham formula, Nucl. Phys. B 149 (1979) 90–100, http://dx.doi.org/10. 1016/0550-3213(79)90158-5, Nucl. Phys. B 153 (1979) 546 (Erratum).
- [2] R.J. Hill, G. Paz, Nucleon spin-averaged forward virtual Compton tensor at large Q^2 , arXiv:1611.09917.

Large Q^2 behavior			
	Quark	Gluon	
Spin-0	Collins '78	Collins '78	Hill, GP '16
Spin-2	Hill, GP '16	Hill, GP '16	_

Large Q^2 behavior			
	Quark	Gluon	
Spin-0	Collins '78	Collins '78	Hill, GP '16
Spin-2	Hill, GP '16	Hill, GP '16	_

0

- Even worse, quark spin-0 and gluon spin-0 come with opposite signs After correcting the mistake they largely cancel W₁(0, Q²) is **dominated** by spin-2 contribution
- Lesson: It is important to do a full calculation

Large Q^2 behavior			
	Quark	Gluon	
Spin-0	Collins '78	Collins '78	Hill, GP '16
Spin-2	Hill, GP '16	Hill, GP '16	_

0

- Even worse, quark spin-0 and gluon spin-0 come with opposite signs After correcting the mistake they largely cancel W₁(0, Q²) is **dominated** by spin-2 contribution
- Lesson: It is important to do a full calculation
- Some good news: The mistake has no effect on m_n m_p since gluon contribution is the same at lowest order in isospin breaking

Large Q^2 behavior			
	Quark	Gluon	
Spin-0	Collins '78	Collins '78	Hill, GP '16
Spin-2	Hill, GP '16	Hill, GP '16	_

- Even worse, quark spin-0 and gluon spin-0 come with opposite signs After correcting the mistake they largely cancel W₁(0, Q²) is **dominated** by spin-2 contribution
- Lesson: It is important to do a full calculation
- Some good news: The mistake has no effect on m_n m_p since gluon contribution is the same at lowest order in isospin breaking
- Flip side: You cannot use $m_n m_p$ to constrain muonic hydrogen

Large Q^2 behavior: Results

• The correct spin 0 result

$$\frac{Q^2}{2m_p^2}W_1^{(\text{spin}-0)}(0,Q^2) = -2\sum_q e_q^2 f_q^{(0)} + \left(\sum_q e_q^2\right) \frac{\alpha_s}{12\pi} \tilde{f}_g^{(0)}$$

 $- \langle N(k)|O_{g}^{(0)}|N(k)\rangle \equiv 2m_{N}^{2}f_{g,N}^{(0)}, \quad \langle N(k)|O_{g}^{(0)}(\mu)|N(k)\rangle \equiv -2m_{N}^{2}\tilde{f}_{g,N}^{(0)}(\mu)$

$$1 = (1 - \gamma_m) \sum_q f_q^{(0)} - \frac{\beta}{2g} \tilde{f}_g^{(0)}$$

Large Q^2 behavior: Results

• The correct spin 0 result

$$\frac{Q^2}{2m_p^2}W_1^{(\text{spin}-0)}(0,Q^2) = -2\sum_q e_q^2 f_q^{(0)} + \left(\sum_q e_q^2\right) \frac{\alpha_s}{12\pi} \tilde{f}_g^{(0)}$$

 $- \langle N(k)|O_g^{(0)}|N(k)\rangle \equiv 2m_N^2 f_{q,N}^{(0)}, \quad \langle N(k)|O_g^{(0)}(\mu)|N(k)\rangle \equiv -2m_N^2 \tilde{f}_{g,N}^{(0)}(\mu)$

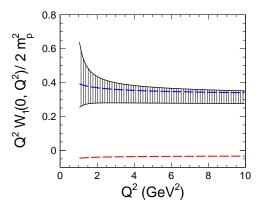
$$1 = (1 - \gamma_m) \sum_q f_q^{(0)} - rac{eta}{2g} \widetilde{f}_g^{(0)}$$

• The new spin 2 result

$$\begin{split} \frac{Q^2}{2m_\rho^2} W_1^{(\text{spin}-2)}(0,Q^2) &= 2\sum_q e_q^2 f_q^{(2)}(\mu) + \left(\sum_q e_q^2\right) \frac{\alpha_s}{4\pi} \left(-\frac{5}{3} + \frac{4}{3}\log\frac{Q^2}{\mu^2}\right) f_g^{(2)}(\mu) \\ &- \langle N(k)|O_q^{(2)\mu\nu}(\mu)|N(k)\rangle \equiv 2\left(k^\mu k^\nu - \frac{g^{\mu\nu}}{4}m_N^2\right) f_{q,N}^{(2)}(\mu) \\ &\langle N(k)|O_g^{(2)\mu\nu}(\mu)|N(k)\rangle \equiv 2\left(k^\mu k^\nu - \frac{g^{\mu\nu}}{4}m_N^2\right) f_{g,N}^{(2)}(\mu) \\ &\sum_q f_q^{(2)}(\mu) + f_g^{(2)}(\mu) = 1 \end{split}$$

Large Q^2 behavior: Total contribution

• The total contribution



- Dashed red: spin 0
- Dashed blue: spin 2
- Vertical stripes: total contribution with perturbative and hadronic errors added in quadrature

Two Photon exchange: small Q^2 and large Q^2

• Using NRQED we have control over low Q^2

$$W_1(0, Q^2) = 2a_p(2+a_p) + \frac{Q^2}{m_p^2} \left\{ \frac{2m_p^3\bar{\beta}}{\alpha} - a_p - \frac{2}{3} \left[(1+a_p)^2 m_p^2 (r_M^p)^2 - m_p^2 (r_E^p)^2 \right] \right\} + \mathcal{O}\left(Q^4\right)$$

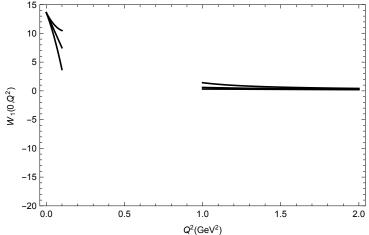
• Using OPE we now have control over the high Q^2

$$\begin{aligned} \frac{Q^2}{2m_p^2} W_1^{(\text{spin}-0)}(0,Q^2) &= -2\sum_q e_q^2 f_q^{(0)} + \left(\sum_q e_q^2\right) \frac{\alpha_s}{12\pi} \tilde{f}_g^{(0)} \\ \frac{Q^2}{2m_p^2} W_1^{(\text{spin}-2)}(0,Q^2) &= 2\sum_q e_q^2 f_q^{(2)}(\mu) + \left(\sum_q e_q^2\right) \frac{\alpha_s}{4\pi} \left(-\frac{5}{3} + \frac{4}{3}\log\frac{Q^2}{\mu^2}\right) f_g^{(2)}(\mu) \end{aligned}$$

- The problem, like the joke, is how to make a whole fish from a head and a tail...
- Before this work we had only the low Q²
 knowing the large Q² allows to connect the dots

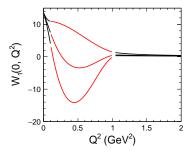
- "Aggressive" modeling: use OPE for $Q^2 \ge 1 \; {
 m GeV^2}$
- Model unknown Q^4 : add $\Delta_L(Q^2)=\pm Q^2/\Lambda_L^2$ with Λ_Lpprox 500 MeV
- Model unknown $1/Q^4$: add $\Delta_H(Q^2) = \pm \Lambda_H^2/Q^2$ with $\Lambda_H \approx 500$ MeV

- "Aggressive" modeling: use OPE for $Q^2 \ge 1 \ {
 m GeV}^2$
- Model unknown Q^4 : add $\Delta_L(Q^2)=\pm Q^2/\Lambda_L^2$ with Λ_Lpprox 500 MeV
- Model unknown $1/Q^4$: add $\Delta_H(Q^2) = \pm \Lambda_H^2/Q^2$ with $\Lambda_H \approx 500$ MeV
- How to connect the curves?

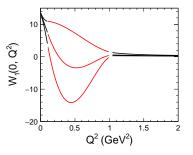


- "Aggressive" modeling: use OPE for $Q^2 \geq 1 \ {
 m GeV}^2$
- Model unknown Q^4 : add $\Delta_L(Q^2)=\pm Q^2/\Lambda_L^2$ with Λ_Lpprox 500 MeV
- Model unknown $1/Q^4$: add $\Delta_H(Q^2) = \pm \Lambda_H^2/Q^2$ with $\Lambda_H \approx 500$ MeV
- Interpolating:

- "Aggressive" modeling: use OPE for $Q^2 \geq 1 \; {\rm GeV}^2$
- Model unknown Q^4 : add $\Delta_L(Q^2)=\pm Q^2/\Lambda_L^2$ with Λ_Lpprox 500 MeV
- Model unknown $1/Q^4$: add $\Delta_H(Q^2) = \pm \Lambda_H^2/Q^2$ with $\Lambda_H \approx 500$ MeV
- Interpolating:



- "Aggressive" modeling: use OPE for $Q^2 \ge 1 \; {\rm GeV}^2$
- Model unknown Q^4 : add $\Delta_L(Q^2)=\pm Q^2/\Lambda_L^2$ with Λ_Lpprox 500 MeV
- Model unknown $1/Q^4$: add $\Delta_H(Q^2) = \pm \Lambda_H^2/Q^2$ with $\Lambda_H \approx 500$ MeV
- Interpolating:



- Energy contribution: $\delta E(2S)^{W_1(0,Q^2)} \in [-0.046 \text{ meV}, -0.021 \text{ meV}]$ To explain the puzzle need this to be $\sim -0.3 \text{ meV}$
- Caveats: OPE might be only valid for larger Q^2 $W_1(0, Q^2)$ might be different than the interpolated lines

Experimental test

- How to test?
- New experiment: μ p scattering MUSE (MUon proton Scattering Experiment) at PSI [R. Gilman et al. (MUSE Collaboration), arXiv:1303.2160]

 Need to connect muon-proton scattering and muonic hydrogen can use a new effective field theory: QED-NRQED [Hill, Lee, GP, Mikhail P. Solon, PRD 87 053017 (2013)] [Steven P. Dye, Matthew Gonderinger, GP, PRD 94 013006 (2016)]

- Proton radius puzzle: $>5\sigma$ discrepancy between
- r_F^p from muonic hydrogen
- r_E^p from hydrogen and e p scattering
- Recent muonic deuterium results find similar discrepancies [Pohl et al. Science **353**, 669 (2016)]
- After more than 6 years the origin is still not clear
- 1) Is it a problem with the electronic extraction?
- 2) Is it a hadronic uncertainty?
- 3) is it new physics?
 - Motivates a reevaluation of our understanding of the proton

• Discussed three topics:

- Discussed three topics:
- Extraction of proton radii from scattering: Use an established tool of the *z* expansion Studies disfavor the muonic hydrogen value

- Discussed three topics:
- Extraction of proton radii from scattering: Use an established tool of the z expansion Studies disfavor the muonic hydrogen value
- 2) The first *full* and *correct* evaluation of large Q^2 behavior of forward virtual Compton tensor Can improve the modeling of two photon exchange effects

- Discussed three topics:
- Extraction of proton radii from scattering: Use an established tool of the z expansion Studies disfavor the muonic hydrogen value
- 2) The first *full* and *correct* evaluation of large Q^2 behavior of forward virtual Compton tensor Can improve the modeling of two photon exchange effects
- 3) Direct connection between muon-proton scattering and muonic hydrogen using a new effective field theory: QED-NRQED

- Discussed three topics:
- Extraction of proton radii from scattering: Use an established tool of the z expansion Studies disfavor the muonic hydrogen value
- 2) The first *full* and *correct* evaluation of large Q^2 behavior of forward virtual Compton tensor Can improve the modeling of two photon exchange effects
- 3) Direct connection between muon-proton scattering and muonic hydrogen using a new effective field theory: QED-NRQED
 - Much more work to do!
 - Thank you

Backup: Connecting muon-proton scattering and muonic hydrogen

MUSE

• Muonic hydrogen:

Muon momentum $\sim m_\mu c lpha \sim 1$ MeV Both proton and muon non-relativistic

MUSE:

Muon momentum $\sim m_\mu \sim 100$ MeV Muon is relativistic, proton is still non-relativistic

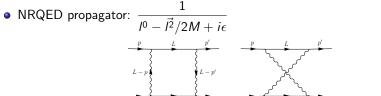
- QED-NRQED effective theory:
- Use QED for muon
- Use NRQED for proton

 $m_\mu/m_p\sim 0.1$ as expansion parameter

 A new effective field theory suggested in [Hill, Lee, GP, Mikhail P. Solon, PRD 87 053017 (2013)]

QED-NRQED Effective Theory

- Example: TPE at the lowest order in 1/m_p
 [Steven P. Dye, Matthew Gonderinger, GP, PRD 94 013006 (2016)]
- Consider muon-proton scattering $\mu(p) + p(k)
 ightarrow \mu(p') + p(k')$
- At lowest order in $1/m_p$: $p^0 = p'^0 \Rightarrow \delta(p^0 p'^0)$
- At the proton rest frame $k=(m_p, ec{0}) \Rightarrow k^0=0$ in NRQED



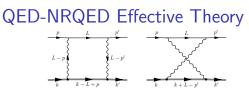
k - L + p

$$\frac{1}{p^0 - L^0 + i\epsilon} + \frac{1}{L^0 - p^0 + i\epsilon} \Rightarrow \delta(L^0 - p^0)$$

In total

$$\delta(p^{0} - p'^{0}) \,\delta(L^{0} - p^{0}) = \delta(L^{0} - p^{0}) \,\delta(L^{0} - p'^{0})$$

k + L - n'



• The amplitude

The cross section

$$\frac{d\sigma}{d\Omega} = \frac{Z^2 \alpha^2 4E^2 \left(1 - v^2 \sin^2 \frac{\theta}{2}\right)}{\vec{q}^4} \left[1 + \frac{Z \alpha \pi v \sin \frac{\theta}{2} \left(1 - \sin \frac{\theta}{2}\right)}{1 - v^2 \sin^2 \theta}\right]$$

Z=1,~E= muon energy, $v=ert ec{p}ert/E,~q=p'-p, heta$ scattering angle

QED-NRQED Effective Theory

QED-NRQED result

$$\frac{d\sigma}{d\Omega} = \frac{Z^2 \alpha^2 4E^2 \left(1 - v^2 \sin^2 \frac{\theta}{2}\right)}{\vec{q}^4} \left[1 + \frac{Z \alpha \pi v \sin \frac{\theta}{2} \left(1 - \sin \frac{\theta}{2}\right)}{1 - v^2 \sin^2 \theta}\right]$$

- Same result as scattering relativistic lepton off static 1/r potential [Dalitz, Proc. Roy. Soc. Lond. 206, 509 (1951)] reproduced in [Itzykson, Zuber, "Quantum Field Theory"]
- Same result as $m_p \to \infty$ of "point particle proton" QED scattering (For $m_p \to \infty$ only proton charge is relevant)

QED-NRQED Effective Theory beyond $m_p ightarrow \infty$ limit

- QED-NRQED allows to calculate $1/m_p$ corrections
- Example: one photon exchange μ + p → μ + p: QED-NRQED = 1/m_p expansion of form factors [Steven P. Dye, Matthew Gonderinger, GP, PRD 94 013006 (2016)]

Connecting muon-proton scattering to muonic hydrogen

Matching

 $G_{F,M}$, Structure func., $W_1(0, Q^2)$ QED. QCD Scale: $m_p \sim 1 \text{ GeV}$ ∜ $r_{F}^{p}, \ \bar{\mu}\gamma^{0}\mu\psi_{D}^{\dagger}\psi_{D}$ QED-NRQED: MUSE Scale: $m_{\mu} \sim 0.1 \text{ GeV}$ ∜ $r_{\rm F}^{\rm p}, \psi_{\mu}^{\dagger}\psi_{\mu}\psi_{\mu}^{\dagger}\psi_{\mu}\psi_{\mu}$ NRQED-NRQED: muonic H • Need to match QED-NRQED contact interaction, e.g. $\bar{\mu}\gamma^{0}\mu\psi_{n}^{\dagger}\psi_{n}$ to NRQED-NRQED contact interaction, e.g. $\psi^{\dagger}_{\mu}\psi_{\mu}\psi^{\dagger}_{\rho}\psi_{\rho}$ [Dye, Gonderinger, GP in progress]

Connecting muon-proton scattering to muonic hydrogen

To do list:

1) Relate QED-NRQED contact interactions to NRQED contact interactions and $W_1(0, Q^2)$

2) Calculate $d\sigma(\mu + p \rightarrow \mu + p)$ and asymmetry in terms of r_E^p and d_2

3) Direct relation between μ -p scattering and muonic H