The spin-dependent quark beam function at NNLO

Ulrich Schubert
Argonne National Laboratory

In collaboration with R. Boughezal, F. Petriello and H. Xing arXiv:1704.05457

Proton Spin Puzzle

- Proton spin sum rule

$$
\begin{gathered}
\frac{1}{2}=\frac{1}{2} \Delta \Sigma+\Delta G+L_{q}+L_{g} \\
\Delta \Sigma=\sum_{i} \int_{0}^{1} d x \Delta f_{q_{i}}(x) \quad \Delta G=\int_{0}^{1} d x \Delta f_{g}(x)
\end{gathered}
$$

- Contribution from quarks much smaller then expected

$$
\Delta \Sigma \approx 0.25
$$

- Helicity parton distributions are probed by

DIS

SIDIS

pp (RHIC)

Current Status

- Current data is not well described

[Ringer, Vogelsang]

[Hinderer, Schlegel, Vogelsang]
- We need more data and more accurate theoretical predictions
=> Extent techniques from unpolarized collision

N -Jettiness

virtual

real virtual

real-real

N -Jettiness

N -Jettiness

$$
\Theta\left(\tau_{\text {cut }}-\tau\right)
$$

$\tau_{\text {cut }}$
$\Theta\left(\tau-\tau_{\text {cut }}\right)$
=> Use factorisation theorem derived from SCET
=> NLO N+1 jet calculation

$$
\frac{d \sigma}{d \mathcal{T}_{N}}=H \otimes B \otimes S \otimes\left[\prod_{n}^{N} J_{n}\right]+\begin{gathered}
\text { Power corrections } \quad=>\text { Liu's and Moult's talk } \\
\text { [Stewart, Tackmann, Waalewijn] }
\end{gathered}
$$

Hard function (H): virtual corrections, process dependent Soft function (S): describes soft radiation Jet function (J): describes radiation collinear to final state jets Beam function (B): describes collinear initial state radiation

Polarized Collisions

- Above cut piece can simply be polarised
- Similar factorization theorem for the below cut piece

$$
\frac{d \sigma_{L L}}{d \mathcal{T}_{N}}=\Delta H \otimes \Delta B \otimes S \otimes\left[\prod_{n}^{N} J_{n}\right]+\cdots
$$

Soft function: unchanged from unpolarized version [Boughezal, Liu, Petriello]
Jet function: unchanged from unpolarized version [Becher, Neubert; Becher, Bell]

Hard function: known for DIS and DY

$$
\Delta H=H^{+}-H^{-}
$$

Beam function: previously unknown, discussed here

$$
\Delta B=B^{+}-B^{-}
$$

Beam function

$$
\Delta B_{i}(t, x, \mu)=\sum_{j} \int_{x}^{1} \frac{d \xi}{\xi} \Delta \mathcal{I}_{i j}\left(t, \frac{x}{\xi}\right) \Delta f_{j}(\xi, \mu)
$$

- Parton j with momentum distribution determined by PDF emits collinear radiation, which builds up jet described by $\mathcal{I}_{i j}$
- These emissions might change the parton i entering the hard scattering (type, momentum fraction)
- $\mathcal{I}_{i j}$ can be calculated perturbatively

Outline of Calculation

- Generate squared amplitude

$$
\Delta B_{i j}^{\mathrm{bare}}(t, z)=
$$

Outline of Calculation

- Generate squared amplitude
- Reverse Unitarity => Dulat's talk
[Anastasiou, Melnikov; Anastasiou, Dixon, Melnikov, Petriello]
- Integration-by-parts(IBP) => Zhang's talk

$$
\text { [Chetyrkin,Tkachov] } \Delta B_{i j}^{\text {bare }}(t, z)=\sum_{i=1}^{n} c_{i}(t, z) I_{i}(t, z)
$$

Outline of Calculation

- Generate squared amplitude
- Reverse Unitarity => Dulat's talk
[Anastasiou, Melnikov; Anastasiou, Dixon, Melnikov, Petriello]
- Integration-by-parts(IBP) => Zhang's talk [Chetyrkin,Tkachov]
- Differential Equations(DEQ)

$$
\Delta B_{i j}^{\mathrm{bare}}(t, z)=\sum_{i=1}^{n} c_{i}(t, z) I_{i}(t, z)
$$

[Kotikov;Gehrmann,Remiddi]
=> Zeng's talk

Outline of Calculation

- Generate squared amplitude
- Reverse Unitarity => Dulat's talk
[Anastasiou, Melnikov; Anastasiou, Dixon, Melnikov, Petriello]
- Integration-by-parts(IBP) => Zhang's talk
$\begin{gathered}\text { [Chetyrkin,Tkachov] } \\ \text { Differential Equations(DEQ) }\end{gathered} \Delta B_{i j}^{\text {bare }}(t, z)=\sum_{i=1}^{n} c_{i}(t, z) I_{i}(t, z)$
[Kotikov;Gehrmann,Remiddi] => Zeng's talk
- UV renormalization

$$
\Delta B_{i j}^{\text {bare }}(t, z)=\int d t^{\prime} Z_{i}\left(t-t^{\prime}, \mu\right) \Delta B_{i j}\left(t^{\prime}, z, \mu\right),
$$

Outline of Calculation

- Generate squared amplitude
- Reverse Unitarity => Dulat's talk
[Anastasiou, Melnikov; Anastasiou, Dixon, Melnikov, Petriello]
- Integration-by-parts(IBP) => Zhang's talk [Chetyrkin,Tkachov]
- Differential Equations(DEQ)

$$
\Delta B_{i j}^{\mathrm{bare}}(t, z)=\sum_{i=1}^{n} c_{i}(t, z) I_{i}(t, z)
$$

[Kotikov;Gehrmann,Remiddi] => Zeng's talk

- UV renormalization

$$
\Delta B_{i j}^{b a r e}(t, z)=\int d t^{\prime} Z_{i}\left(t-t^{\prime}, \mu\right) \Delta B_{i j}\left(t^{\prime}, z, \mu\right)
$$

- Matching on PDF

$$
\Delta B_{i j}(t, z, \mu)=\sum_{k} \Delta \mathcal{I}_{i k}(t, z, \mu) \otimes \Delta f_{k j}(z)
$$

Outline of Calculation

- Generate squared amplitude
- Reverse Unitarity => Dulat's talk
[Anastasiou, Melnikov; Anastasiou, Dixon, Melnikov, Petriello]
- Integration-by-parts(IBP) => Zhang's talk [Chetyrkin,Tkachov]
- Differential Equations(DEQ)

$$
\Delta B_{i j}^{\mathrm{bare}}(t, z)=\sum_{i=1}^{n} c_{i}(t, z) I_{i}(t, z)
$$

[Kotikov;Gehrmann,Remiddi] $\quad=>$ Zeng's talk

- UV renormalization

$$
\Delta B_{i j}^{\text {bare }}(t, z)=\int d t^{\prime} Z_{i}\left(t-t^{\prime}, \mu\right) \Delta B_{i j}\left(t^{\prime}, z, \mu\right)
$$

- Matching on PDF

$$
\Delta B_{i j}(t, z, \mu)=\sum_{k} \Delta \mathcal{I}_{i k}(t, z, \mu) \otimes \Delta f_{k j}(z)
$$

- Additional renormalization for γ_{5}

$$
\Delta B=\left(\Delta \tilde{\mathcal{I}} \otimes \bar{Z}^{5}\right) \otimes\left(Z^{5} \otimes \Delta \tilde{f}\right)
$$

Master Integrals

- Initially $\mathcal{O}(100)-\mathcal{O}(1000)$ integrals
- 9 MIs in real-real channel

- 3 MIs in real-virtual channel

- Generate DEQ

$$
\partial_{x} \vec{f}=A_{x} \vec{f}, \quad x=t, z
$$

Calculation of Master Integrals

- Bring DEQ in canonical form with Magnus algorithm [Henn; Argeri, Di Vita, Mastrolia, Mirabella, Schlenk, Tancredi, U.S.]

$$
\partial_{x} \vec{g}=\epsilon \hat{A}_{x} \vec{g} \quad \hat{A}_{z}=\frac{\hat{A}_{1}}{z}+\frac{\hat{A}_{2}}{1+z}+\frac{\hat{A}_{3}}{1-z}
$$

- Matrices A_{i} have only numeric entries
- Simple alphabet $\{1-z, z, 1+z\}$
- Solution can be written in terms of Harmonic Polylogarithms

$$
\begin{aligned}
H_{a_{1}, \ldots, a_{n}}(z) & =\int_{0}^{z} d t \frac{H_{a_{2}, \ldots a_{n}}(t)}{t-a_{1}}, \quad a_{i} \in 0,-1,1 \\
H_{0, \ldots, 0}(z) & =\frac{1}{n!} \log ^{n}(z)
\end{aligned}
$$

Calculation of Master Integrals

- MI for RR channel behave like $(1-z)^{-2 \epsilon} F(z)$ when $z \rightarrow 1$
[Gaunt, Stahlhofen, Tackmann]
=> fixes 7 out of 9 boundary constants
- One MI is easily obtained by direct integration
- Last boundary constant obtained by
- Introduce extra scale
- Solve DEQ with extra scale
- Here all boundaries can be fixed easily
- take scale carefully to zero
- MI for RV behave like $(1-z)^{-2 \epsilon,-\epsilon} F(z)$ when $z \rightarrow 1$
=> fixes one boundary constant
- Taking carefully $z \rightarrow 0$ fixes second boundary constant
- Last boundary can be easily obtained by direct integration

UV renormalisation and Matching

- Use standard $\overline{\mathrm{MS}}$ renormalization

$$
\Delta B_{i j}^{\text {bare }(2)}(t, z)=\Delta B_{i j}^{(2)}(t, z, \mu)+Z_{i}^{(2)}(t, \mu) \delta_{i j} \delta(1-z)+\int d t^{\prime} Z_{i}^{(1)}\left(t-t^{\prime}, \mu\right) \Delta B_{i j}^{(1)}\left(t^{\prime}, z, \mu\right) .
$$

- Requires calculation of $\Delta B_{i j}^{(1)}(t, z, \mu)$ up to $\mathcal{O}\left(\epsilon^{2}\right)$
- Match beam function on PDFs

$$
\begin{aligned}
\Delta \tilde{\mathcal{I}}_{i j}^{(2)}(t, z, \mu) & =\Delta B_{i j}^{(2)}(t, z, \mu)-4 \delta(t) \Delta \tilde{f}_{i j}^{(2)}(z)-2 \sum_{h} \Delta \tilde{\mathcal{I}}_{i k}^{(1)}(t, z, \mu) \otimes \Delta \tilde{f}_{k j}^{(1)}(z) . \\
\Delta \tilde{f}_{i j}^{(1)}(z) & =-\frac{1}{\epsilon} \Delta \tilde{P}_{i j}^{(0)}(z), \\
\Delta \tilde{f}_{i j}^{(2)}(z) & =\frac{1}{2 \epsilon^{2}} \sum_{k} \Delta \tilde{P}_{i k}^{(0)}(z) \otimes \Delta \tilde{P}_{k j}^{(0)}(z)+\frac{\beta_{0}}{4 \epsilon^{2}} \Delta \tilde{P}_{i j}^{(0)}(z)-\frac{1}{2 \epsilon} \Delta \tilde{P}_{i j}^{(1)}(z),
\end{aligned}
$$

- Cancellation of poles provides consistency check

Treatment of Gamma5

- We use HVBM scheme

$$
\gamma_{5} \equiv \frac{i}{4!} \epsilon^{\mu \nu \rho \sigma} \gamma_{\mu} \gamma_{\nu} \gamma_{\sigma} \gamma_{\rho} \quad\left\{\gamma_{5}, \tilde{\gamma}_{\mu}\right\}=0, \quad\left[\gamma_{5}, \hat{\gamma}_{\mu}\right]=0
$$

- Result of Dirac traces depends on d- and 4-d-dimensional momenta
- Map 4-d momenta to auxiliary vectors

$$
\left.I^{d}\left[\hat{k}_{1} \cdot \hat{k}_{2}\right]=-\frac{2 \epsilon}{v_{\perp}^{2}} I^{d}\left[\left(k_{1} \cdot v_{\perp}\right)\left(k_{2} \cdot v_{\perp}\right)\right)\right],
$$

- But: HVBM breaks helicity conservation
=> Must be restored with additional Z^{5} renormalization

$$
\Delta B=\left(\Delta \tilde{\mathcal{I}} \otimes \bar{Z}^{5}\right) \otimes\left(Z^{5} \otimes \tilde{f}\right)
$$

- Z^{5} can be obtained by demanding helicity conservation

$$
\Delta \mathcal{I}_{q q}^{(2, V)}=\mathcal{I}_{q q}^{(2, V)} \quad \Delta \mathcal{I}_{q \bar{q}}^{(2, V)}=-\mathcal{I}_{q \bar{q}}^{(2, V)}
$$

Consistency checks

- HVBM scheme implemented in public code Tracer and in-house Form routine
[Jamin,Lautenbacher]
- MIs calculated by DEQ and direct integration
- Cancellation of poles during renormalization and matching
- Confirmed polarised LO and NLO splitting functions [Vogelsang]
- Confirmed UV renormalisation constant [Stewart, Tackmann, Waalewijn; Ritzmann, Waalewijn]
- Confirmed unpolarised quark beam function calculation at NLO and NNLO
[Stewart, Tackmann, Waalewijn; Gaunt, Stahlhofen, Tackmann]
- Z^{5} consistent with Literature
[Ravindran, Smith, van Neerven]

Conclusions \& Outlook

- Calculated spin-dependent quark beam function
- Last missing ingredient to apply N -jettiness subtraction to many polarized processes
- Provided independent check on:
- unpolarized quark beam function up to NNLO
- polarised splitting function up to NLO
- Ready for phenomenological studies

Conclusions \& Outlook

- Calculated spin-dependent quark beam function
- Last missing ingredient to apply N -jettiness subtraction to many polarized processes
- Provided independent check on:
- unpolarized quark beam function up to NNLO
- polarised splitting function up to NLO
- Ready for phenomenological studies

Thank you for your attention

