FALKO DULAT

TOWARDS DIFFERENTIAL HIGGS PRODUCTION AT N3LO

IN COLLABORATION WITH

Global signal strength for all prod. and decay modes measured with ~10% accuracy

 $\mu = 1.09 \pm 0.07_{\text{stat}} \pm 0.04_{\text{exp syst.}} \pm 0.03_{\text{th. bkg}} \pm 0.07_{\text{th. signal}}$

UNCERTAINTY PROJECTIONS

REDUCTION OF THEORETICAL UNCERTAINTIES IS CRUCIAL

DIFFERENTIAL HIGGS PRODUCTION

WE NEED HIGH PRECISION DIFFERENTIAL PREDICTIONS FOR HIGGS PRODUCTION

INCLUSIVE CROSS SECTION

Stabilization of scale dependence and higher order corrections

Can we obtain the same for differential observables?

- Analytic complexity of higher order matrix elements (loop corrections, multi-leg amplitudes):
 - Algebraic complexity, coupled differential equations, new mathematical functions: Elliptic generalizations of multiple polylogarithms...
- "Numerical complexity": Monte-Carlo integral over highly divergent final state configurations
 Sector decomplexity
 - Infrared subtractions
 - Many successful methods
 - Challenging beyond two loops

- Can we circumvent some problems of subtraction methods?
- Make use of some of the tools from our inclusive calculation.
- Focus on some relevant LHC observables:

- We want a complete picture of Higgs production at O(a⁵)
- Part of this picture is Higgs+Jet @ NNLO
- What is missing is the rapidity spectrum at N3LO
 - 1. Compute rapidity distribution at N3LO
 - Combine with Higgs+Jet
 @ NNLO using qT subtraction or nJettiness

JISSEP STATIST

DOUBLE DIFFERENTIAL

- Inclusive in radiation exclusive in the Higgs
- Integrate out all extra QCD radiation
- Jet observables at this order are described by H+Jet @ NNLO

$$\sigma_{PP \to H+X} [\mathcal{O}] = \sum_{i,j} \int_{-\infty}^{+\infty} dY \int_{0}^{\infty} dp_{T}^{2} \int_{0}^{2\pi} \frac{d\phi}{2\pi} \int_{0}^{1} dx_{1} dx_{2} f_{i}(x_{1}) f_{j}(x_{2}) \\ \times \frac{d^{2} \hat{\sigma}_{ij}}{(S, x_{1}, x_{2}, m_{h}^{2}, Y, p_{T}^{2})} \mathcal{J}_{\mathcal{O}}(Y n^{2}, \phi, m^{2})$$

10

example observable:

$$\mathcal{J}_{(Y,p_T^2,\phi,m_h^2)} = \theta(p_T^2 > 20GeV)$$

$$\frac{d^2 \hat{\sigma}_{ij}}{dY dp_T^2} \sim \sum_X \int d\Phi_n \left| \mathcal{M}_{ij \to H+X} \right|^2$$

$$\frac{\partial \phi}{\partial \phi} \int d\Phi_n$$

- Inclusive final state integral over QCD radiation
- Analytic integration

 δ_+

Use techniques from inclusive N3LO calculation

$$\delta\left(y - \frac{1}{2}\log\left(\frac{E - p_z}{E + p_z}\right)\right)$$
$$\delta\left(p_T - \sqrt{E^2 - p_z^2 - m_h^2}\right)$$

$$(p_i^2) \sim \lim_{\delta \to 0} \left[\frac{1}{p_i^2 + i\delta} - \frac{1}{p_i^2 - i\delta} \right] = \left[\frac{1}{p_i^2} \right]_c$$

$$REVERSE UNTARTY$$
(Anastasiou, Menikov; Anastasiou, Dixon, Melnikov, Petriello)

RAPIDITY DISTRIBUTION

TRANSVERSE MOMENTUM SPECTRUM

13

- Realistic observables (ATLAS cuts)
- Non-trivial features induced by the cuts $\frac{V_{\text{rd}}}{T_{\text{Hg}}}$
- Relatively flat K-factors
- Similar perturbative progression as the inclusive distribution

$$\eta_{\gamma} < 2.37$$

 $\eta_{\gamma} \notin [1.37, 1.52]$
 $p_{T, \gamma_1} > 0.35 m_h$
 $p_{T, \gamma_2} > 0.25 m_h$

DISTRIBUTIONS OF FINAL STATE MOMENTA

- Distributions of final state momenta:
- Leading photon pT
- Rapidity difference

 $\Delta \eta$

- ▶ UV and collinear counter terms for the N3LO cross section require the NNLO cross section to $\mathcal{O}(\epsilon^1)$
- N3LO scale variation can be derived from DGLAP

$$\hat{\sigma}^{(3)} = \hat{\sigma}_{0}^{(3)} + \hat{\sigma}_{1}^{(3)} \log\left(\frac{m_{h}^{2}}{\mu^{2}}\right) + \hat{\sigma}_{2}^{(3)} \log^{2}\left(\frac{m_{h}^{2}}{\mu^{2}}\right) + \hat{\sigma}_{3}^{(3)} \log^{3}\left(\frac{m_{h}^{2}}{\mu^{2}}\right)$$

$$\int_{\substack{0.5 \ 1. \ 1.5 \ 2. \ 2.5 \ 3. \ 3.5 \ 4.}}^{\frac{1}{2}} \frac{1}{1} + \frac$$

N3L0 MATRIX ELEMENTS

- Need to compute matrix elements with two or more final state partons
 ²⁵
- Compute using reverse unitarity, differential equations ...
- O(1000) master integrals required
- First step: threshold expansion

THRESHOLD EXPANSION - RAPIDITY DISTRIBUTION

THRESHOLD EXPANSION - PT DISTRIBUTION

рТ

SV @ N3L0

SV @ N3L0

SV RAPIDITIY DISTRIBUTION @ N3L0

- Good progress towards differential distributions for gluon fusion at N3LO
- "Higgs-differential" framework is able to describe realistic final state observables
- Further progress towards N3LO is systematic, we need to compute a few more integrals
- Threshold expansion is feasible for some differential observables
- Interesting lessons to be learned when doing higher order differential calculations