Latest LHC results on Standard Model measurements

Outline

Jet Production

- Inclusive jet cross sections
- Dijet cross sections
- PDFs constraints
- Extraction of α_s
- 2-, 3-, 4-jet azimuthal correlations

Photons

- Inclusive photon cross sections
- Photon pair production
- Photon + jets

W,Z Production

- Inclusive W,Z cross sections
- Differential cross sections and PDFs
- W mass

V (W,Z) + jets

- W,Z + jets differential cross sections
- W,Z + b(b)-jet
- Z + charm
- Electroweak W,Z + 2 jets

Multi-bosons

- Diboson cross-sections
- VV+jets
- aTGC and aQGC

Top quark production

- Pair production cross-sections
- Associated pair production
- Constraints on PDFs
- Single top production
- Top mass

*Selected list of recent results. By no means a complete list.

Standard Model Measurements

SM precision measurements allow us to test a wide range of QCD and EW predictions, and to extract fundamental parameters such as α_s . They are also important for understanding the backgrounds to rare/new processes and can be sensitive themselves to the effects of new physics.

Inclusive Jet Production

Inclusive jets cross-section: double differential (p_T , y) measurements over several orders of magnitude, up 3.2 TeV and |y|=4.7, compared with fixed-order NLO calculations, NLOJet++ and POWHEG+PY8 (corrected for non perturbative and EW effects). Main tool for jet energy calibration.

- ✓ Overall good agreement with NLO QCD predictions.
- ✓ Two cone sizes to test radiative and NP effects (smaller cone size needs NLO+PS).
- \checkmark Sensitive to PDFs over a wide (x,Q) range, in particular high-x gluon and valence quark.
- ✓ Used to extract α_s .

LoopFest 2017

Dijet Production

19.7 fb⁻¹ (8 TeV) 108 **Dijets cross-sections:** Triple differential cross [pb/GeV] → $0 \le y_b < 1 \quad 0 \le y^* < 1 \quad (\times 10^2)$ **CMS** 107 ∇ 0 ≤ y_b < 1 1 ≤ y^* < 2 (×10²) sections (p_{T,avg}, y^{*}, y_b), sensitive to different sub- $0 \le y_b < 1 \ 2 \le y^* < 3 \ (\times 10^1)$ 106 $1 \le y_b < 2 \ 0 \le y^* < 1 \ (\times 10^1)$ $1 \le y_b < 2$ $1 \le y^* < 2$ (×10¹) processes and overlapping (x,Q) regions in PDFs. 105 $2 \le y_b < 3 \ 0 \le y^* < 1 \ (\times 10^0)$ dp_T, _{avg}dy_bdy * Compared to NLOJet++ (with NP and EW effects). 104 $d^3\sigma$ ✓ In agreement with NLO predictions. 10³ 10² ✓ Used to constraint PDFs. 101 \checkmark Used to extract α_s . $-y_2$ 100 aa → iets \blacksquare @ q_iq_i \rightarrow jets \blacksquare @ q_i $\overline{q}_i \rightarrow$ jet 10-1 3 ② gq → jets $(x_q < x_q)$ **S** $q_i q_i \rightarrow jets$ **S** $q_i \overline{q_i} \rightarrow jet$ ③ gq → jets $(x_q > x_q)$ $\frac{1}{2}|y_1|$ 8 TeV fraction 8.0 8 10-2 10-3 (5) y*Subprocess f 9.0 50 10^{-4} 200 300 500 1000 $p_{T, avg}$ [GeV] $\mathbf{2}$ (1) $gg \rightarrow jets$ ④ qiqi → jets 6 $q_i \overline{q}_i \rightarrow jets$ ② gq → jets ($x_q < x_q$) S q_iq_i → jets $\bigcirc q_i \overline{q}_i \rightarrow jets$ arXiv:1705.02628 ③ gq → jets $(x_g > x_q)$ 8 TeV 0.2 $(\mathbf{7})$ $\begin{array}{l} 0 \leq y_b < 1 \\ 2 \leq y^* < 3 \end{array}$ 0.0 200 300 500 p_{T, avg} [GeV] (2) 0.2 0 $\begin{array}{l} 2 \leq y_b < 3 \\ 0 \leq y^* < 1 \end{array}$ $\mathbf{2}$ -0 1 5 0.0 $y_{\rm b} = \frac{1}{2}|y_1 + y_2|$ 200 300 p_{T.avg} [GeV]

PDFs constraints

Precision constraints of the PDFs: Inclusive jet, dijet cross sections, and other precision measurements of jet processes are fitted to constrain PDFs (and determine α_s).

19.7 fb⁻¹ (8 TeV)

CMS

- ✓ Reduces PDF uncertainties, specially the gluon PDF, in the boosted regime dN⊗ ∭ 1.4
- (high $|y_1+y_2|$, high $p_{T,avg}$), where large x are probed. \checkmark It also changes the gluon PDF shape for low Q².

Measurement of strong coupling α_s

Evolution of strong coupling extracted from different measurements up to Q=2TeV: α_s is a fundamental parameter in SM, modifications of running at higher scale could occur due to new physics.

Measurement from ratio of inclusive 3- to 2- jet cross sections (R_{32}) as a function of $H_T/2=1/2(p_{T1}+p_{T2})$.

 ✓ Compared to NLOJet++ to extract α_s with FastNLO framework.

CMS R₃

TEEC

 $\alpha_s(M_Z) = 0.1150 \pm 0.0010 \text{ (exp)} \pm 0.0013 \text{ (PDF)} \pm 0.0015 \text{ (NP)}^{+0.0050}_{-0.0000} \text{ (scale)}$ $\alpha_s(M_Z) = 0.1162 \pm 0.0008 \text{ (exp)} \pm 0.0018 \text{ (PDF)} \pm 0.0003 \text{ (NP)}^{+0.0050}_{-0.0000} \text{ (scale)} \pm 0.0007 \text{ (other)}$

LoopFest 2017

ATLAS-STDM-2016-10 7

2-3-4-jet azimuthal correlations

Multi-jet azimuthal correlations: normalized differential cross-section in $\Delta\phi_{1,2}$ of the two leading p_T jets in inclusive 2-, 3-, 4- jets, and in $\Delta\phi_{2j}^{min}$, the minimum azimuthal angular separation between any two jets in 3-, 4- jet topologies.

✓ Sensitive to the radiation of additional jets .
✓ Probes the dynamics of multijet production.
✓ Results compared to LO and NLO MC generators with various PS tunes.

35.9 fb⁻¹ (13 TeV)

2-3-4-jet azimuthal correlations

ATLAS-STDM-2016-10

CMS-PAS-SMP-16-014

✓ Improved description from NLO. Herwig7 describes the $\Delta\phi_{1,2}$ cross sections best, while PH2J (POWHEG matched to Herwig++ or Pythia8) describes the $\Delta \phi_{2i}^{min}$ data best. ✓ Transverse energy-energy correlations best described by Pythia8 and Sherpa. 9

Inclusive Photon Production

Inclusive isolated photon cross-section: double differential $(E^{\gamma}_{T}, \eta^{\gamma})$ measurement compared with pQCD NLO calculation (JETPHOX), and LO MC generators (PYTHIA8 and SHERPA).

- ✓ Good shape agreement with LO predictions, except for E^{γ}_{T} >500 GeV and $|\eta^{\gamma}|$ <1.38.
- ✓ Adequate description from JETPHOX, within uncertainties (which are still large).
- ✓ Can be used to constrain gluon PDF.

LoopFest 2017

Isolated Photon Pairs

Production of pairs of isolated photons: fiducial and differential cross section measurements as functions of $\Delta \phi_{\gamma\gamma}$, $m_{\gamma\gamma}$, $p_{T\gamma\gamma}$ and other angular variables. Compared with NLO (DIPHOX), NNLO pQCD (2 γ NNLO), NLO+PS (Sherpa 2.2.1), NLO+resummation of soft gluons at NNLL (RESBOS).

 ✓ DIPHOX and RESBOS do not reproduce the data. Discrepancies also observed for 2γNNLO. Best description from SHERPA.
LoopFest 2017

Photon + jets

Photon + jets cross sections : differential in E_T^{γ} , p_T^{jet} , $\Delta \phi_{\gamma j} m_{\gamma j}$ and other angular variables. Compared with NLO predictions of JETPHOX and BLACKHAT and LO predictions of SHERPA and PYTHIA. The pattern of QCD radiation around the photon and the leading jet is also studied by measuring jet production in a region centered on each object.

✓ Best description of γ +jet with JETPHOX. γ +2 jets is described by BLACKHAT up to 750 GeV.

W and Z production

Inclusive W and Z cross section measurements: High precision determination of W⁺,W⁻,Z and Drell-Yan production cross-sections, fundamental tests of EW theory. Differential cross-sections. Tests of lepton universality. NNLO QCD analysis (with HERA data) to constrain PDFs.

- ✓ High precision (uncertainty <2.8%) fiducial cross-sections calculated and compared to NNLO QCD (DYNNLO/FEWZ)+ NLO EWK (FEWZ/SANC) with different PDFs. Potential for PDF discrimination is visible.
- ✓ Constraints to the strange quark PDF and measurement of $|V_{cs}|$.
- $\checkmark~$ Test of lepton universality for 1st and 2nd generation in agreement with SM.

LoopFest 2017

W and Z differential cross sections and PDFs

- \checkmark The uncertainty on the strange quark density in the proton, s(x), is reduced.
- ✓ Strange quarks are not suppressed w.r.t. up and down sea quarks.
- ✓ A value for $|V_{cs}|$ is extracted, assuming unitarity. Compatible with previous results.
- ✓ A new PDF set is produced, ATLAS-epWZ16.

W mass

W mass measurement: Precision consistency test of the SM. Mass extracted from M_T and lepton p_T . First measurement of M_W at the LHC. Relies on Z events for calibration and modelling. Largest sources of uncertainty are theoretical (Z cross section angular coefficients, p^W_T modelling, PDFs) and instrumental (lepton energy scale and resolution).

m_w = 80370 ± 7 (stat.) ± 11 (exp. syst.) ± 14 (mod. syst.) MeV = 80370 ± 19 MeV

Z+jets differential cross sections: test QCD fixed-order calculations and MCs, sensitive to higher order effects but also soft QCD effects (particle emission, PS). Background to top,

- \checkmark NLO improves upon LO (spectra, merging schemes).
- \checkmark Very good agreement with NLO and NNLO (R. Boughezal et al.) predictions.
- \checkmark With large datasets, extend to 2D differential, higher jet |y|.
- ✓ Measurements drive/benefit from advancements in MC generators, e.g. multileg NLO interfaced with PS, and in fixed-order calculations.

0.8

200

400

600

800

1000

H₊ [GeV]

1200

1400

W+jets differential cross sections: Similarly to Z+jets, the measurements are sensitive to higher order corrections and radiative effects. With large statistics, detailed analysis of angular correlations among final state particles.

- ✓ Very good agreement with NLO and NNLO (R. Boughezal et al.) predictions.
- ✓ Deviations observed for large values of jet |y| and of $|\Delta y|$ among p_T and y-ordered jets) and for small values of azimuthal separation between the muons and jets.
- ✓ Starting to test EW effects of real W radiative emission. Effects well described by NLO QCD+EW predictions.
 LoopFest 2017

Z,W+b jets

Z+(b)b and W+bb cross sections: Sensitive to gluon splitting, can probe b-quark PDF, important background to Higgs and BSM searches.

W+bb Cross section obtained by fitting M_{T} . Compared to LO (4FS/5FS) and NLO.

EPJC (2017) 77:92

Z+(b)b Fiducial Z+ \geq 1b, \geq 2b cross sections and ratio. Differential in jet p_T and Z p_T . Compared to LO (4FS/5FS) and NLO. CMS 19.8 fb⁻¹ (8 TeV) arXiv:1611.06507 , submitted to dơ / dp^b_T (pb/GeV) 10. 5.01 ----- Data MadGraph 5FS + Pythia6 MadGraph 4FS + Pythia6 MadGraph-aMC@NLO + Pythia8 Powheg MINLO + Pythia8 10⁻³ $Z/\gamma^*(\rightarrow II)$ + at least 1 b jet anti- k_{τ} (R = 0.5) jets 10-4 $p_{-}^{\text{jet}} > 30 \text{ GeV}, |\eta^{\text{jet}}| < 2.4$ MadGraph 5FS + Pythia6, normalized to σ_{NNLO} , stat. uncertainty on Theory / Data MadGraph 4FS + Pythia6, normalized to σ_{NLO} , stat. uncertainty only

MadGraph-aMC@NLO + Pythia8, normalized to σ_{NLO} , stat. + syst. uncertainties only

200

Powheg MINLO + Pythia8, normalized to σ_{NLO} , stat. +syst. uncertainties only

150

0 0 <u>0</u> <u>0</u> <u>0</u> <u>0</u> <u>0</u>

100

50

 \checkmark For W+bb, in agreement with predictions.

 \checkmark For Z+(b)b 20% discrepancy for 4FS LO. 5FS LO overestimates data at low b-jet p_T.

EPJC

Leading b jet p_T (GeV)

Z+c

Z+c production: Test of QCD predictions, sensitive to charm content in the proton. Test modelling of Z+HF in searches (e.g. FCNC top decays). Signal isolated with:

- Selection with a muon from decay of a HF quark, participating in a displaced vertex.
- Selection of exclusive final states from D meson resonant peaks (either D^{\pm} or $D^{*\pm}$)

Fiducial cross sections (Z+c, Z+c/Z+b) measured, also differentially in $p_T(Z)$ and $p_T(jet)$. Comparison with LO and NLO predictions.

 \checkmark Generally in good agreement, except in the low jet p_T region (wr.t. MCFM).

EW production of Z+2 jets

EW Z+2 jets production (VBF): Probes EWSB. Background to VBF Higgs. Characterized by 2 forward jets separated in rapidity, with low hadronic activity in between. Main background: QCD Z+2 jets. Signal extraction with BDT (M_{ii} , $\Delta \eta_{ii}$, p_{Tii} , quark-gluon jet likelihood, angular, and event balance variables). Gap activity is studied in signal enriched region (BDT>0.92).

 \checkmark The cross section, $\sigma(EW \parallel jj)=552\pm19(stat)\pm55(syst)$ fb agrees with LO SM predictions.

Data favor a signal model with HERWIG(PYTHIA8) PS for low(larger) gap activity.

Similar measurement recently performed by ATLAS on 13 TeV (ATLAS-STDM-2016-09) also agrees with SM predictions. LoopFest 2017 20

EW production of W+2 jets

EW W+2 jets production (VBF): Characterized by forward-backward jets (plus W) topology. The signal is extracted with a likelihood fit of M_{jj} in signal and control regions. Cross sections are unfolded in EW- and QCD-dominated regions. It is used to probe for anomalous Triple Gauge Couplings.

- ✓ Fiducial cross sections in agreement with NLO SM predictions.
- Differential cross-sections well described in regions of different admixture of EW and QCD. EW NLO corrections needed for some spectra.
- ✓ aTGC limits extracted from extended SM Lagrangian (effective Lagrangian or effective field theory) containing non-SM operators and anomalous coupling parameters.

21

Multi-bosons

Multi-bosons production: Important test of EWSB. Backgrounds to Higgs and BSM searches, sensitive to higher order corrections (QCD and QED). Processes can be rare (e.g. tri-bosons), they test the SM gauge structure and are sensitive to new physics.

✓ New 13 TeV results in good agreement with SM expectations. Inclusive diboson cross section measurements are dominated by systematic uncertainties.

LoopFest 2017

ZZ production

ZZ inclusive production: First diboson measurement with 2016 13 data. Main channel: $ZZ \rightarrow 4\ell$, clean signature and background to $H \rightarrow 4\ell$. Differential cross sections (with and w/o jets)to test higher order effects (NNLO QCD and NLO QED).

EW production, WWjj and Zγjj

EW VV+2 jets production (VBS): Probes EWSB. Characterized by 2 forward jets separated in rapidity, with low hadronic activity in between. New results for $Z\gamma$ and WW.

Z γ : uses Z $\rightarrow \ell \ell$ and Z $\rightarrow \nu \nu$ decays and a high mass dijet system. EW (at 2 σ) and inclusive Z γ jj cross sections are extracted in several fiducial regions. aQGC are determined.

 $W^{\pm}W^{\pm}$: same sign lepton selection, two jets with large y separation and m_{jj} leads to first observation of EW VV at 13 TeV (5.5 σ)

 ✓ Good agreement with SM predictions, first observation of EW VV at 13 TeV in W[±]W[±] (fiducial cross section measured).

Constraints are set on aQGC.

Anomalous Vector Boson Couplings

Anomalous vector boson couplings: New physics at higher scales can lead to modified couplings \rightarrow probe for increase in cross sections. ✓ aTGC constrained with inclusive ...
✓ aQGC constrained with EW VVjj and triboson.

arXiv:1705.01966

Limits on neutral aTGC ZZ γ and ZZZ couplings Limits on aQGC

Complete list at https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsSMPaTGC

Top pair production

Production of top quarks: tests SM, special connection to EWSB? (heaviest know elementary particle). The LHC is a top factory, with enough statistics to perform precision measurements of differential cross-sections.

CMS-PAS-TOP-16-023

LoopFest 2017

CMS-PAS-TOP-16-007

Associated tTX production

Associated production: $t\bar{t}(W,Z)$, $t\bar{t}\gamma$, ratio of $t\bar{t}b\bar{b}$ and $t\bar{t}jj$ cross sections

 $t\overline{t}(W,Z)$ observation at (5.5,9.9) σ

Constraints on PDFs from tt cross sections

Ratio of $t\bar{t}/Z$ production cross sections:

Systematics cancel in ratio measurements. Ratios of 7, 8, and 13 TeV inclusive Z and $t\bar{t}$ compared with NNLO (NLO EW) for Z and NNLO+NNLL for $t\bar{t}$, with different PDFs.

Double differential cross sections:

 $e\mu$ (+ jets) double differential vs. y($t\bar{t}$), M($t\bar{t}$)) included in a fit of parametrized PDFs.

arXiv.1703.01630

- ✓ Tension data/predictions in the tt/Z double ratio 8/7 TeV, not ascribable to PDFs.
- ✓ Projected PDF uncertainties show significant impact on gluon (x~0.1) and light-quark sea (x<0.02) distributions
- ✓ Shows significant impact on gluon PDF. Measurement at 5.02 TeV further extends sensitivity to high-x gluons (CMS-PAS-TOP-16-023)

EW Single Top production

- ✓ EW Single top quark measured cross-sections in agreement with NLO+NNLL predictions. First 13 TeV measurements for the t-channel and Wt cross-sections.
- ✓ Differential cross-section measurements are available for the t-channel.

LoopFest 2017

Top quark mass

Top quark mass: measured in many channels with many techniques.

- \checkmark The combination of many mass measurements has a 0.3% precision.
- ✓ First measurement at 13 TeV (μ +jets final state).

CMS-PAS-TOP-16-022

Conclusions

Outstanding performance of the LHC in 2016.

Broad range of Standard Model analyses with 7, 8, and 13 TeV data from the LHC experiments.

No significant deviations from the SM observed to date. Increasingly more precise and complex SM measurements will continue to play a complementary role to direct searches in probing for new physics.

The full set of ATLAS and CMS results is available at http://cms-results.web.cern.ch/cmsresults/public-results/publications/

Thank you!

LoopFest 2017

Backup

CMS and ATLAS

Data taking in 2016

An exceptional 2nd year of 13 TeV ("Run 2") running, exceeding expectations

CMS Peak Luminosity Per Day, pp, 2016, $\sqrt{s} = 13$ TeV

15 Hz/nb goal in instantaneous luminosity reached early in the run and maintained throughout

