Numerical approach to multi-scale multi-loop integrals

Zhao Li Institute of High Energy Physics, Chinese Academy of Science

June 1st, 2017 @ LOOPFEST XVI, ANL

i.c.w. Gexing Li, Jian Wang, Yan Wang, Xiaoran Zhao

State-of-Higgs

- Anastasiou et al. JHEP 1605 (2016) 058
 N³LO inclusive Higgs Xsection in infinite m_t (finite m_t @NLO)
- Dulat et al. arXiv:1704.08220 NNLO differential Higgs Xsection in EFT
- Banfi et al. JHEP 1604 (2016) 049
 N³LO+NNLL Jet vetoed Higgs Xsection in EFT
- Chen et al. JHEP 1610 (2016) 066 NNLO Higgs+Jet in EFT (finite m_t @LO)
- Grigo et al. NPB888 (2014) 17
 NNLO Higgs pair in EFT
- Grigo et al. NPB900 (2015) 412 NNLO Higgs pair in 1/m_t expansion
- Borowka et al. JHEP 1610 (2016) 107
 NLO Higgs pair with finite m_t
- Many other calculations.....

CEPC-SPPC

Perimeter: 50~70km ~1million Higgs bosons @ CEPC

100TeV SppC?

时间	主要工作内容
$2015\sim 2020$	CEPC 设计、预研
$2021\sim 2027$	CEPC 建造
$2027\sim 2035$	CEPC 运行
$2015\sim 2030$	SppC 设计、预研
$2030\sim 2040$	SppC 建造
$2040\sim 2050$	SppC 运行

Figure 3.6 Feynman diagrams of the $e^+e^- \rightarrow ZH$, $e^+e^- \rightarrow \nu\bar{\nu}H$ and $e^+e^- \rightarrow e^+e^-H$ processes.

Needs & Obstacles

- Higher accuracy of data from LHC, HL-LHC, ILC/CEPC/ FCC-ee (high order (SUSY)EW corrections?)
- Multiple scales induce problems on analytical evaluation of higher-loop.
- Analytical expressions can reveal important behaviors, but progress is getting slower. Special math may be behind, but how? when? where?
- By demand from experiments, practically more theoretical predictions can be obtained by numerical approaches.

Numerical approaches for multiscale multi-loop

- Mellin-Barnes Representation Many tools, faster, difficult on many scales.
- Sector Decomposition
 More general, slower, okay for many scales.

Sector Decomposition

G.Heinrich, Int.J.Mod.Phys.A23:1457-1486,2008

Integrate out loop momenta $G_{l_{1}\cdots l_{R}}^{\mu_{1}\cdots \mu_{R}} = (-1)^{N_{\nu}} \frac{1}{\prod_{j=1}^{N} \Gamma(\nu_{j})} \int_{0}^{\infty} \prod_{j=1}^{N} dx_{j} x_{j}^{\nu_{j}-1} \delta\left(1 - \sum_{l=1}^{N} x_{l}\right)$ $\times \sum_{m=0}^{[R/2]} \left(-\frac{1}{2}\right)^{m} \Gamma(N_{\nu} - m - LD/2) [(\tilde{M}^{-1} \otimes g)^{(m)} \tilde{l}^{(R-2m)}]^{\Gamma_{1},...,\Gamma_{R}}$ $\times \frac{\mathcal{U}^{N_{\nu}-(L+1)D/2-R}}{\mathcal{F}^{N_{\nu}-LD/2-m}}, \qquad (7)$

where

$$\mathcal{F}(\mathbf{x}) = \det(M) \left[\sum_{j,l=1}^{L} Q_j M_{jl}^{-1} Q_l - J - i\delta \right],$$

$$\mathcal{U}(\mathbf{x}) = \det(M), \quad \tilde{M}^{-1} = \mathcal{U}M^{-1}, \quad \tilde{l} = \mathcal{U}v$$
(8)

 $egin{aligned} \mathcal{U} &= x_{123}x_{567} + x_4x_{123567} \ , \ &\mathcal{F} &= (-s_{12})(x_2x_3x_{4567} + x_5x_6x_{1234} + x_2x_4x_6 + x_3x_4x_5) \ &+ (-s_{23})x_1x_4x_7 + (-p_4^2)x_7(x_2x_4 + x_5x_{1234}) \ , \ & ext{where } x_{iik}... &= x_i + x_i + x_k + \cdots ext{ and } s_{ii} = (p_i + p_i)^2. \end{aligned}$

First generate primary sectors to eliminate Delta function

$$\int_0^\infty d^N x = \sum_{l=1}^N \int_0^\infty d^N x \prod_{\substack{j=1\ j
eq l}}^N heta(x_l \ge x_j) \, .$$

$$x_j = egin{cases} x_l t_j & ext{for } j < l\,, \ x_l & ext{for } j = l\,, \ x_l t_{j-1} & ext{for } j > l \ \end{cases}$$

$$G_{l} = \int_{0}^{1} \prod_{j=1}^{N-1} dt_{j} \frac{\mathcal{U}_{l}^{N_{\nu}-(L+1)D/2}(\mathbf{t})}{\mathcal{F}_{l}^{N_{\nu}-LD/2}(\mathbf{t})}, \quad l = 1, \dots, N.$$

Determine a sub-set of parameters ti

$$\mathcal{S} = \{t_{lpha_1}, \dots, t_{lpha_r}\}$$

Then divide into r sub-sectors

$$\begin{split} \prod_{j=1}^r \theta(1 \ge t_{\alpha_j} \ge 0) &= \sum_{k=1}^r \prod_{\substack{j=1\\j \ne k}}^r \theta(t_{\alpha_k} \ge t_{\alpha_j} \ge 0) \,. \\ t_{\alpha_j} \to \begin{cases} t_{\alpha_k} t_{\alpha_j} & \text{for } j \ne k \,, \\ t_{\alpha_k} & \text{for } j = k \,. \end{cases} \end{split}$$

$$G_{lk} = \int_0^1 \left(\prod_{j=1}^{N-1} dt_j t_j^{a_j - b_j \epsilon} \right) \frac{\mathcal{U}_{lk}^{N_\nu - (L+1)D/2}}{\mathcal{F}_{lk}^{N_\nu - LD/2}}, \quad k = 1, \dots, r.$$

$$\mathcal{U}_{lk_1k_2...} = 1 + u(\mathbf{t})\,, \quad \mathcal{F}_{lk_1k_2...} = -s_0 + \sum_eta(-s_eta)f_eta(\mathbf{t})\,,$$

All the coefficients of divergences are finite (complicated).

Decomposition strategies

• Hironaka's polyhedra game

Bogner and Weinzerl, Comput.Phys.Commun. 178 (2008) 596; A. V. Smirnov and V. A. Smirnov, JHEP 05 (2009) 004;

Geometric method

Kaneko and Ueda, Comput.Phys.Commun. 181 (2010) 1352

Iteration of certain strategy will show explicitly dimensional regulators, where poles can be extracted.

$$I_j = \int_0^1 dt_j t_j^{(a_j - b_j \epsilon)} \mathcal{I}(t_j, \{t_{i \neq j}\}, \epsilon) ,$$

$$I_{j} = \sum_{p=0}^{|a_{j}|-1} \frac{1}{a_{j}+p+1-b_{j}\epsilon} \frac{\mathcal{I}_{j}^{(p)}(0,\{t_{i\neq j}\},\epsilon)}{p!} + \int_{0}^{1} dt_{j} t_{j}^{a_{j}-b_{j}\epsilon} R(\vec{t},\epsilon) .$$

$$I_j = -\frac{1}{b_j\epsilon} \mathcal{I}_j(0, \{t_{i\neq j}\}, \epsilon) + \int_0^1 dt_j t_j^{-1-b_j\epsilon} \left(\mathcal{I}(t_j, \{t_{i\neq j}\}, \epsilon) - \mathcal{I}_j(0, \{t_{i\neq j}\}, \epsilon) \right),$$

Contour Deformation

$$I_s = C(\epsilon) \lim_{\delta \to 0} \int_0^1 \frac{\mathcal{D}(\vec{x}, \epsilon) \mathcal{H}_s(\vec{x}, \epsilon)}{\left[\mathcal{F}_s(\vec{x}, m_i^2, s_{jk}) - i\delta\right]^{a+b\epsilon}}$$

$$z_i = x_i - i\lambda x_i^{\alpha} (1 - x_i)^{\beta} \frac{\partial \mathcal{F}_s}{\partial x_i}$$

$$\lim_{\delta \to 0} \int_0^1 \frac{\mathcal{D}(\vec{x}, \epsilon) \,\mathcal{H}_s(\vec{x}, \epsilon)}{\left[\mathcal{F}_s(\vec{x}, m_i^2, s_{jk}) - i\delta\right]^{a+b\epsilon}} = \int_{\mathcal{C}} \frac{\mathcal{D}(\vec{z}, \epsilon) \,\mathcal{H}_s(\vec{z}, \epsilon)}{\left[\mathcal{F}_s(\vec{z}, m_i^2, s_{jk})\right]^{a+b\epsilon}}$$

Improve via quasi-Monte-Carlo $I_{estimate}(f) = \sum_{i=1}^{n-1} f(ec{x_i})$ $I(f) = \int_{a}^{1} d^{s} x f(\vec{x})$ 0.8 0.8 0.6 0.6 O(1/sqrt{n}) O(1/n) 0.4 0.4 0.2 0.2 0 0.6 0.2 0.40.6 C.8 0.2 0.4 0.8 0 D 1

Z. Li et al., Chin. Phys. C40 (2016) no.3, 033103

Implementation on GPU

	Vegas/CPU	QMC/GPU	
P_2	$-7.959 \pm 0.009 - 10.586i \pm 0.009i$	$-7.949 \pm 0.003 - 10.585i \pm 0.005i$	
P_1	$3.9 \pm 0.1 - 28.1i \pm 0.1i$	$3.831 \pm 0.005 - 28.022i \pm 0.005i$	
P_0	$-3.9 \pm 0.8 + 92.3i \pm 0.8i$	$-4.63 \pm 0.07 + 92.13i \pm 0.07i$	
Integration Time	45540s	19s	

Z. Li et al., Chin.Phys. C40 (2016) no.3, 033103

Implementation on GPU

	Vegas/CPU	QMC/GPU	
P_2	$-3.848 \pm 0.004 + 0.0005i \pm 0.003i$	$-3.8482 \pm 0.0007 + 0.0004i \pm 0.0003i$	
P_1	$3.81 \pm 0.03 - 6.41i \pm 0.03i$	$3.83 \pm 0.02 - 6.40i \pm 0.02i$	
P_0	$77.2 \pm 0.2 + 20.1i \pm 0.2i$	$77.2 \pm 0.1 + 19.9i \pm 0.1i$	
Integration Time	54290s	20s	

Z. Li et al., Chin.Phys. C40 (2016) no.3, 033103

Practical Process calculations

- Successful example: Borowka et al. JHEP 1610 (2016) 107
 NLO Higgs pair with finite m_t
- Option #1: IBP reduction?
- Option #2: GPU or MPI?
- Option #3: Best choice of parameters of contour deformation?
- Option #4: Best lattice of QMC?
- •

Mixed QCD-EW corrections for Higgs boson production at e+e- colliders

$\sqrt{s}~({ m GeV})$	$\sigma_{ m LO}~({ m fb})$	$\sigma_{ m NLO}$ (fb)	$\sigma_{ m NNLO}$ (fb)	$\sigma^{ m exp.}_{ m NNLO}~(m fb)$
240	256.3(9)	228.0(1)	230.9(4)	230.9(4)
250	256.3(9)	227.3(1)	230.2(4)	230.2(4)
300	193.4(7)	170.2(1)	172.4(3)	172.4(3)
350	138.2(5)	122.1(1)	123.9(2)	123.6(2)
500	61.38(22)	53.86(2)	54.24(7)	54.64(10)

TABLE I. The NNLO predictions for the total cross sections at various collider energies.

Y.Gong et al., Phys.Rev. D95 (2017) no.9, 093003

Toward automatic NNLO calculations (MIRACLE)

- Feynman diagram generation
- Automatic amplitude manipulation
- Feynman parameterization
- Sector Decomposition
- Pole extraction
- Classification of sectors
- Export expressions to numerical code
- Deploy to cluster -> Money/Funding

FORM, Mathematica, Fermat, GiNaC, C++, CUDA/MPI+AVX, QGRAF, FIESTA, latBuilder, WPO

Goal of MIRACLE

Prospect

- Numerical approach can give numbers for multiscale multi-loop processes.
- Hard to identify physics structures, eg. large logs.
- Many precise predictions can be expected in a few years, Higgs/single-top/ttH/dijet/new-physics?.
- Still hope breakthrough on analytical approach.

Thank you!