Three-loop quark form factor at high energy: the leading mass corrections

<u>Tao Liu</u>^a, Alexander Penin^{a,b}, Nikolai Zerf^c

^aUniversity of Alberta, ^bKarlsruhe Institute of Technology ^cUniversität Heidelberg arXiv:1705.07910 [hep-ph]

LoopFest 2017

$$\mathcal{F} = ar{q}(p_2) \left(\gamma_\mu F_1 + rac{i\sigma_{\mu
u}Q^
u}{2m_q}F_2
ight) q(p_1)$$

three-loop massless [Baikov, Chetyrkin, Smirnov ² , Steinhauser 2009]			
	[Gehrmann,Glover,Huber,Ikizlerli,Studerus 2010]		
four-loop massless	[Henn,Lee,Smirnov ² ,Steinhauser 2016; Manteuffel,Schabinger 2016]		
	[Lee,Smirnov ² ,Steinhauser 2017]		
two-loop massive	[Mastrolia,Remiddi 2003; Bernreuther et al 2005]		
three-loop massive	[Henn,Smirnov ² ,Steinhauser 2016]		

(日) (四) (三) (三)

High energy limit

$$p_1^2 = p_2^2 = m_q^2 \ll Q^2, \quad \rho = m_q^2/Q^2$$
$$F_1 = \exp\left[-\frac{\alpha_s}{2\pi} \frac{C_F \ln \rho (1 + \mathcal{O}(\rho^2))}{\varepsilon}\right] \sum_{n=0}^{\infty} \rho^n F_1^{(n)}$$

Leading power:

Sudakov logs [Sudakov 1956; Frenkel, Taylor 1976]

subleading logs also exponentiate [Muller 1979; Collins 1980; Sen 1981; ...]

 $\mathcal{O}(\rho)$ corrections:

expansion by regions [Beneke, Smirnov 1998]

double logs come from soft quark exchange [Penin 2015; Penin, Zerf 2016]

Two loop

• Sudakov parameterization: $I_i = u_i p_1 + v_i p_2 + I_{i\perp}$

• eikonal glue:
$$\frac{1}{(p_1+l_i)^2} \approx \frac{1}{Q^2 v_i}$$

• soft quark:
$$\frac{m_q}{(l_i^2 - m_q^2)} \approx -i\pi m_q \delta(Q^2 u_i v_i + l_i^2 - m_q^2)$$

•
$$\eta_i = \ln v_i / \ln \rho$$
, $\xi_i = \ln u_i / \ln \rho$

Result:

$$\begin{aligned} x &= \frac{\alpha_s}{4\pi} \ln^2 \rho \\ \mathcal{K} &= \theta (1 - \eta_1 - \xi_1) \theta (1 - \eta_2 - \xi_2) \theta (\eta_2 - \eta_1) \theta (\xi_1 - \xi_2) \\ \mathcal{F}_1^{(1,2l)} &= 2 \left(\mathcal{C}_{\mathcal{A}} - 2 \mathcal{C}_{\mathcal{F}} \right) x^2 \times \int \mathcal{K}(\eta_1, \eta_2, \xi_1, \xi_2) \mathrm{d}\eta_1 \mathrm{d}\eta_2 \mathrm{d}\xi_1 \mathrm{d}\xi_2 \end{aligned}$$

60000000

Diagrams

Dressing the two-loop non-planar digram with a soft glue:

Others either have no proper region or vanshing color factor.

• region:
$$v_3 \ll v_2$$
, $u_3 \ll u_1$
• eikonal quark: $\frac{1}{(p_1+l_3)^2-m_q^2} \approx \frac{1}{Q^2(v_3+2\rho u_3)}$
• soft glue: $\frac{1}{l_3^2} \approx -i\pi\delta(Q^2u_3v_3+l_3^2)$

$$\propto \int_{\rho u_3}^{\nu_2} \frac{\mathrm{d} v_3}{v_3} \int_{\rho v_3}^{u_1} \frac{\mathrm{d} u_3}{u_3}$$

After subtractions one get infrared finite integrals:

$$\propto -\left(\int_{\nu_2}^1 \frac{\mathrm{d}\nu_3}{\nu_3} \int_{\rho\nu_3}^{u_1} \frac{\mathrm{d}u_3}{u_3} + \int_{\rho u_3}^{\nu_2} \frac{\mathrm{d}\nu_3}{\nu_3} \int_{u_1}^1 \frac{\mathrm{d}u_3}{u_3} + \int_{\nu_2}^1 \frac{\mathrm{d}\nu_3}{\nu_3} \int_{u_1}^1 \frac{\mathrm{d}u_3}{u_3} \right)$$

subtraction reproduces the factorized singular term.

Tao Liu (UofA)

Dia(h)

Sudakov parameterization: $l_3 = u_3 l_1 + v_3 p_2 + l_{3\perp}$

 I_3 flow down at the vertex:

$$\propto \int_{
ho u_3/u_1}^1 \frac{\mathrm{d}v_3}{v_3} \int_{
ho v_3/u_1}^1 \frac{\mathrm{d}u_3}{u_3}$$

 I_3 flow up at the vertex:

$$\propto -\int_{\rho u_3/u_1}^{v_1} \frac{\mathrm{d}v_3}{v_3} \int_{\rho v_3/u_1}^1 \frac{\mathrm{d}u_3}{u_3}$$

The above integrals are divergent separately and the sum of them is finite.

Results

$$F_1^{(1,3l)} = \frac{C_F \left(C_A - 2C_F\right)}{2} \sum_{\lambda} c_{\lambda} d_{\lambda} x^3$$
$$d_{\lambda} = 4 \int w_{\lambda}(\eta, \xi) K(\eta_1, \eta_2, \xi_1, \xi_2) \mathrm{d}\eta_1 \mathrm{d}\eta_2 \mathrm{d}\xi_1 \mathrm{d}\xi_2$$

λ	w_{λ}	d_λ	c_λ	
а	$-((\eta_2+2)\eta_2+(\xi_1-2\eta_2+2)\xi_1-1)$	$-\frac{17}{45}$	$-C_F$	
b	$2\xi_2\eta_1$	$\frac{1}{45}$	$-C_F$	
С	$2(\xi_1-\xi_2)(\eta_2-\eta_1)$	$\frac{1}{15}$	$C_A - C_F$	
d	$-\eta_1(\eta_1-2\xi_1+2)$	$-\frac{1}{10}$	$C_A - C_F$	
е	$(\eta_2 - \eta_1)(2 - 2\xi_1 + \eta_1 + \eta_2)$	<u>8</u> 45	$-\frac{C_A}{2}$	
f	$2\eta_1(\xi_1-\xi_2)$	$\frac{1}{30}$	$-\frac{C_A}{2}$	
g	$2\eta_2(\xi_1-\xi_2)$	$\frac{1}{10}$	$-\frac{C_A}{2}$	
h	$\eta_1(\eta_1-2\xi_1+2)$	$\frac{1}{10}$	$\frac{C_A}{2} - C_F$	
i	$\eta_2(\eta_2-2\xi_1+2)$	$\frac{5}{18}$	$\frac{C_{A}}{2} - C_{F}$	
< 日 > < 同 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 二 > < 二 > < 二 > < 二 > < 二 > < 二 > < 二 > < 二 > < 二 > < 二 > < 二 > < 二 > < 二 > < 二 > < 二 > < 二 > < 二 > < 二 > < 二 > < 二 > < 二 > < 二 > < 二 > < 二 > < 二 > < 二 > < 二 > < 二 > < 二 > < 二 > < 二 > < 二 > < 二 > < 二 > < 二 > < 二 > < 二 > < 二 > < 二 > < 二 > < 二 > < 二 > < 二 > < 二 > < 二 > < 二 > < 二 > < 二 > < 二 > < 二 > < 二 > < 二 > < 二 > < 二 > < 二 > < 二 > < 二 > < 二 > < 二 > < 二 > < 二 > < 二 > < 二 > < 二 > < 二 > < 二 > < 二 > < 二 > < 二 > < 二 > < 二 > < 二 > < 二 > < 二 > < 二 > < 二 > < 二 > < 二 > < 二 > < 二 > < 二 > < 二 > < 二 > < 二 > < 二 > < 二 > < 二 > < 二 > < 二 > < 二 > < 二 > < 二 > < 二 > < 二 > < 二 > < 二 > < 二 > < 二 > < 二 > < 二 > < 二 > < 二 > < 二 > < 二 > < 二 > < 二 > < 二 > < 二 > < 二 > < 二 > < 二 > < 二 > < 二 > < 二 > < 二 > < 二 > < 二 > < 二 > < 二 > < 二 > < 二 > < 二 > < 二 > < 二 > < 二 > < 二 > < 二 > < 二 > < 二 > < 二 > < 二 > < 二 > < 二 > < 二 > < 二 > < 二 > < 二 > < 二 > < 二 > < 二 > < 二 > < 二 > < 二 > < 二 > < 二 > < 二 > < 二 > < 二 > < 二 > < 二 > < 二 > < 二 > < 二 > < 二 > < 二 > < 二 > < 二 > < 二 > < 二 > < 二 > < 二 > < 二 > < 二 > < 二 > < 二 > < 二 > < 二 > < 二 > < 二 > < 二 > < 二 > < 二 > < 二 > < 二 > < 二 > < 二 > < 二 > < 二 > < 二 > < 二 > < 二 > < 二 > < 二 > < 二 > < 二 > < 二 > < 二 > < 二 > < 二 > < 二 > < 二 > < 二 > < 二 > < 二 > < 二 > < 二 > < 二 > < 二 > < 二 > < 二 > < 二 > < 二 > < 二 > < 二 > < 二 > < 二 < 二				

Tao Liu (UofA)

$$F_1^{(1)} = \frac{C_F (C_A - 2C_F)}{6} x^2 \left[1 - \frac{C_A + 4C_F}{5} x + \mathcal{O}(x^2) \right]$$

$$C_A - 2C_F = 1/N_c.$$

Our result agrees with the analysis of leading-color approximation.

[Henn,Smirnov,Smirnov,Steinhauser 2016]

QED resummation

$$F_1^{(0)} = \exp\left[-x\right]$$

$$F_1^{(1)} = -4x^2 \int \exp\left[-x\left(1 - 2\eta_1\xi_1 + 4\eta_1\xi_2 - 2\eta_2\xi_2\right)\right] K d\eta_1 d\eta_2 d\xi_1 d\xi_2$$

Tao Liu (UofA)

Three-loop quark form factor

LoopFest XVI 10 / 11

- Our result could be used to cross check future calculations
- To be done: 1. all order resummation for nonabelian case 2. double logs for other physical processes

Thanks for your attention!