HIGH ENERGY BEHAVIOUR OF FORM FACTORS

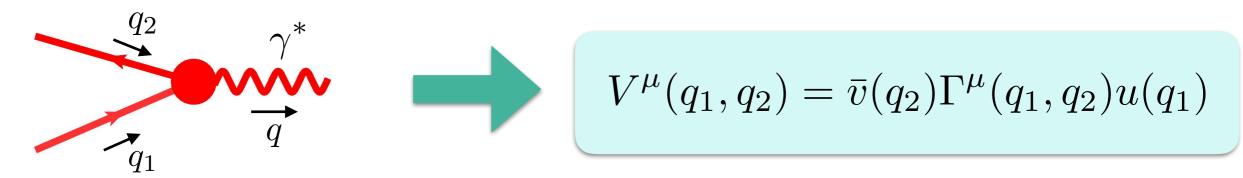
Taushif Ahmed TTP, KIT LoopFest XVI, June 2, 2017

With Johannes Henn & Matthias Steinhauser

Ref: 1704.07846

GOAL & MOTIVATION

- Infrared divergences: important quantities
- Consider: QCD corrections to photon-quark vertex



• Vertex function: characterised by two scalar form factors F_1, F_2

$$\Gamma^{\mu}(q_1, q_2) = Q_q \left[F_1(q^2) \gamma^{\mu} - \frac{i}{2m} F_2(q^2) \sigma^{\mu\nu} q_{\nu} \right]$$

- Consider: Form factors of massive quarks
- Important quantities: F_1 is building block for variety of observables e.g. Xsection of hadron production in e^-e^+ annihilation & derived quantities like forwardbackward asymmetry
- Also consider: the massless scenario

GOAL & MOTIVATION

State-of-the-art results

```
m \neq 0 \qquad F_1, F_2 \text{ at 3-loop} \\ m = 0 \qquad F_1 \qquad \text{at 4-loop} \qquad \begin{cases} \text{[Henn, Smirnov, Smirnov, Steinhauser '16]} \\ \text{[Henn, Smirnov, Smirnov, Steinhauser, Lee '16]} \end{cases}
                                                                                                                                                [Manteuffel, Schabinger '16]
```

- Next steps: compute the full results for general N_c underway by several groups
- We address: What can we say about next order?
 - → indeed, IR poles can be predicted (partially) by exploiting RG evolution of FF

RESULTS
$$m \neq 0 \rightsquigarrow F_1$$
 at 4-loop in large N_c and high energy limit upto $1/\epsilon^2$ $m = 0 \rightsquigarrow F_1$ at 5-loop in large N_c and high energy limit upto $1/\epsilon^3$

 We also obtain process independent functions relating massive & massless amplitudes in high-energy limit at 3 & 4-loops

PLAN OF THE TALK

- RG evolution: massive
 - Cute technique to solve
- RG evolution: massless
- Process independent functions
- Conclusions

RG EQUATION: MASSIVE

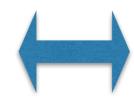
• FF satisfies KG eqn in dimensional reg.

[Sudakov '56; Mueller '79; Collins '80; Sen '81]

[Magnea, Sterman '90]

[Gluza, Mitov, Moch, Riemann '07, '09]

$$-\frac{d}{d\ln\mu^2}\ln\tilde{F}\left(\hat{a}_s, \frac{\mathbf{Q^2}}{\mu^2}, \frac{\mathbf{m^2}}{\mu^2}, \epsilon\right) = \frac{1}{2}\left[\tilde{K}\left(\hat{a}_s, \frac{\mathbf{m^2}}{\mu_R^2}, \frac{\mu_R^2}{\mu^2}, \epsilon\right) + \tilde{G}\left(\hat{a}_s, \frac{\mathbf{Q^2}}{\mu_R^2}, \frac{\mu_R^2}{\mu^2}, \epsilon\right)\right]$$



QCD factorisation, gauge & RG invariance

The form factor

$$F = Ce^{\ln \tilde{F}}$$

Matching coefficient

$$Q^2 = -q^2 = -(p_1 + p_2)^2$$
 $d = 4 - 2\epsilon$
 $\hat{a}_s \equiv \hat{\alpha}_s/4\pi$
 μ : scale to keep \hat{a}_s dimensionless μ_R : renormalisation scale

- Goal: Solve the RG
- Strategy: Use bare coupling \hat{a}_s instead of renormalised one a_s

SOLVING RG EQUATION: MASSIVE

RG invariance of FF wrt μ_R

$$\frac{d}{d \ln \mu_R^2} \tilde{K} \left(\hat{a}_s, \frac{m^2}{\mu_R^2}, \frac{\mu_R^2}{\mu^2}, \epsilon \right) = -\frac{d}{d \ln \mu_R^2} \tilde{G} \left(\hat{a}_s, \frac{Q^2}{\mu_R^2}, \frac{\mu_R^2}{\mu^2}, \epsilon \right) = -\tilde{A} \left(a_s \left(\mu_R^2 \right) \right)$$

Cusp anomalous dimension

$$\tilde{K}\left(\hat{a}_{s}, \frac{m^{2}}{\mu_{R}^{2}}, \frac{\mu_{R}^{2}}{\mu^{2}}, \epsilon\right) = K\left(a_{s}\left(m^{2}\right), \epsilon\right) - \int_{m^{2}}^{\mu_{R}^{2}} \frac{d\mu_{R}^{2}}{\mu_{R}^{2}} A\left(a_{s}\left(\mu_{R}^{2}\right)\right)$$

$$\tilde{G}\left(\hat{a}_{s}, \frac{Q^{2}}{\mu_{R}^{2}}, \frac{\mu_{R}^{2}}{\mu^{2}}, \epsilon\right) = G\left(a_{s}\left(Q^{2}\right), \epsilon\right) + \int_{Q^{2}}^{\mu_{R}^{2}} \frac{d\mu_{R}^{2}}{\mu_{R}^{2}} A\left(a_{s}\left(\mu_{R}^{2}\right)\right)$$

Boundary terms

SOLVING RG EQUATION: MASSIVE

Initial goal: Solve for $\ln \tilde{F}$ in powers of bare \hat{a}_s

Need all quantities in powers of \hat{a}_s

Expand

$$\mathcal{B}\left(a_s\left(\lambda^2\right)\right) \equiv \sum_{k=1}^{\infty} a_s^k \left(\lambda^2\right) \mathcal{B}_k$$

$$\mathcal{B} \in \{K, G, A\}$$

$$\lambda \in \{m, Q, \mu_R\}$$

Renormalisation constant

$$\hat{a}_s = a_s(\mu_R^2) Z_{a_s} \left(\mu_R^2\right) \left(\frac{\mu^2}{\mu_R^2}\right)^{-\epsilon}$$

$$Z_{a_s}^{-1}(\lambda^2) = 1 + \sum_{k=1}^{\infty} \hat{a}_s^k \left(\frac{\lambda^2}{\mu^2}\right)^{-k\epsilon} \hat{Z}_{a_s}^{-1,(k)}$$

functions of β_i , ϵ

Expansion of \mathcal{B} in powers of \hat{a}_s

SOLVING RG EQUATION: MASSIVE

Soln of $\mathcal B$ in powers of $\hat a_s$

$$\mathcal{B}\left(a_s\left(\lambda^2\right)\right) = \sum_{k=1}^{\infty} \hat{a}_s^k \left(\frac{\lambda^2}{\mu^2}\right)^{-k\epsilon} \hat{\mathcal{B}}_k$$

$$\begin{split} \hat{\mathcal{B}}_1 &= \mathcal{B}_1 \,, \\ \hat{\mathcal{B}}_2 &= \mathcal{B}_2 + \mathcal{B}_1 \hat{Z}_{a_s}^{-1,(1)} \,, \\ \hat{\mathcal{B}}_3 &= \mathcal{B}_3 + 2 \mathcal{B}_2 \hat{Z}_{a_s}^{-1,(1)} + \mathcal{B}_1 \hat{Z}_{a_s}^{-1,(2)} \,, \\ \hat{\mathcal{B}}_4 &= \mathcal{B}_4 + 3 \mathcal{B}_3 \hat{Z}_{a_s}^{-1,(1)} + \mathcal{B}_2 \Big\{ \left(\hat{Z}_{a_s}^{-1,(1)} \right)^2 + 2 \hat{Z}_{a_s}^{-1,(2)} \Big\} + \mathcal{B}_1 \hat{Z}_{a_s}^{-1,(3)} \end{split}$$

and so on...

The integral becomes a polynomial integral \rightsquigarrow trivial

$$\int_{\lambda^2}^{\mu_R^2} \frac{d\mu_R^2}{\mu_R^2} A\left(a_s\left(\mu_R^2\right)\right) = \sum_{k=1}^{\infty} \hat{a}_s^k \frac{1}{k\epsilon} \left[\left(\frac{\lambda^2}{\mu^2}\right)^{-k\epsilon} - \left(\frac{\mu_R^2}{\mu^2}\right)^{-k\epsilon} \right] \hat{A}_k$$

UN-RENORMALISED SOLUTION: MASSIVE

Solution of KG in powers of bare \hat{a}_s

$$\ln \tilde{F}\left(\hat{a}_s, \frac{Q^2}{\mu^2}, \frac{m^2}{\mu^2}, \epsilon\right) = \sum_{k=1}^{\infty} \hat{a}_s^k \left[\left(\frac{Q^2}{\mu^2}\right)^{-k\epsilon} \hat{\tilde{\mathcal{L}}}_k^Q(\epsilon) + \left(\frac{m^2}{\mu^2}\right)^{-k\epsilon} \hat{\tilde{\mathcal{L}}}_k^m(\epsilon) \right]$$

Renormalised Solution

$$\hat{a}_s = a_s(\mu_R^2) Z_{a_s} \left(\mu_R^2\right) \left(\frac{\mu^2}{\mu_R^2}\right)^{-\epsilon}$$

with
$$\hat{\tilde{\mathcal{L}}}_{k}^{Q}(\epsilon) = -\frac{1}{2k\epsilon} \left[\hat{G}_{k} + \frac{1}{k\epsilon} \hat{A}_{k} \right],$$

$$\hat{\tilde{\mathcal{L}}}_{k}^{m}(\epsilon) = -\frac{1}{2k\epsilon} \left[\hat{K}_{k} - \frac{1}{k\epsilon} \hat{A}_{k} \right]$$

$$= \sum_{k=1}^{\infty} \left[a_s^k(\mathbf{Q^2}) \tilde{\mathcal{L}}_k^Q + a_s^k(\mathbf{m^2}) \tilde{\mathcal{L}}_k^m \right]$$

To obtain the renormalised solution in powers of general $a_s(\mu_R^2)$

 \rightsquigarrow use d-dimensional evolution of $a_s(\mu_B^2)$

$$\frac{d}{d\ln\mu_R^2}a_s\left(\mu_R^2\right) = -\epsilon a_s\left(\mu_R^2\right) - \sum_{k=0}^{\infty} \beta_k a_s^{k+2}\left(\mu_R^2\right)$$

Solved iteratively

RENORMALISED SOLUTION: MASSIVE

Renormalised Solution

$$\ln \tilde{F} = \sum_{k=1}^{\infty} a_s^k(\mu_R^2) \tilde{\mathcal{L}}_k$$

For $\mu_R^2 = m^2$ at one loop

$$\tilde{\mathcal{L}}_{1} = \frac{1}{\epsilon} \left\{ -\frac{1}{2} \left(G_{1} + K_{1} - A_{1}L \right) \right\} + \frac{L}{2} \left(G_{1} - \frac{A_{1}L}{2} \right) - \epsilon \left\{ \frac{L^{2}}{4} \left(G_{1} - \frac{A_{1}L}{3} \right) \right\} + \epsilon^{2} \left\{ \frac{L^{3}}{12} \left(G_{1} - \frac{A_{1}L}{4} \right) \right\} - \epsilon^{3} \left\{ \frac{L^{4}}{48} \left(G_{1} - \frac{A_{1}L}{5} \right) \right\} + \epsilon^{4} \left\{ \frac{L^{5}}{240} \left(G_{1} - \frac{A_{1}L}{6} \right) \right\} + \mathcal{O}(\epsilon^{5})$$

At two loop

$$\tilde{\mathcal{L}}_{2} = \frac{1}{\epsilon^{2}} \left\{ \frac{\beta_{0}}{4} \left(G_{1} + K_{1} - A_{1}L \right) \right\} - \frac{1}{\epsilon} \left\{ \frac{1}{4} \left(G_{2} + K_{2} - A_{2}L \right) \right\} + \frac{L}{2} \left(G_{2} - \frac{A_{2}L}{2} \right) - \frac{\beta_{0}L^{2}}{4} \left(G_{1} - \frac{A_{1}L}{3} \right) - \epsilon \left\{ \frac{L^{2}}{2} \left(G_{2} - \frac{A_{2}L}{3} \right) - \frac{\beta_{0}L^{3}}{4} \left(G_{1} - \frac{A_{1}L}{4} \right) \right\} + \epsilon^{2} \left\{ \frac{L^{3}}{3} \left(G_{2} - \frac{A_{2}L}{4} \right) - \frac{7\beta_{0}L^{4}}{48} \left(G_{1} - \frac{A_{1}L}{5} \right) \right\} - \epsilon^{3} \left\{ \frac{L^{4}}{6} \left(G_{2} - \frac{A_{2}L}{5} \right) - \frac{\beta_{0}L^{5}}{16} \left(G_{1} - \frac{A_{1}L}{6} \right) \right\} + \mathcal{O}(\epsilon^{4})$$
 and so on...

10

 $L = \log(Q^2/m^2)$

NEW RESULTS: MASSIVE

• Conformal theory $\beta_i = 0$: all order result

$$\tilde{\mathcal{L}}_{k} = \sum_{l=0}^{\infty} (-\epsilon k)^{l-1} \frac{L^{l}}{2 l!} \left(G_{k} + \delta_{0l} K_{k} - \frac{A_{k} L}{l+1} \right)$$

Form Factor

$$F = C\left(a_s\left(m^2\right), \epsilon\right) e^{\ln \tilde{F}}$$
 consistent with literature up to 3-loop

[Gluza, Mitov, Moch, Riemann '07, '09]

State-of-the-art results

$$F_1, F_2$$
 at 3-loop in large N_c

[Henn, Smirnov, Smirnov, Steinhauser '16]

New results in 1704.07846

 F_1 at 4-loop in large N_c and high energy limit

 F_2 is suppressed by m^2/q^2 in high energy limit

DETERMINING UNKNOWN CONSTANTS: MASSIVE

Determining unknown constants G, K, C in large N_c limit

Comparing with explicit computations

$$G_1$$
 to $\mathcal{O}(\epsilon^2)$, G_2 to $\mathcal{O}(\epsilon)$

[Gluza, Mitov, Moch, Riemann '07 '09]

$$G_3$$
 to $\mathcal{O}(\epsilon^0)$ new!



 F_1 at 3-loop

[Henn, Smirnov, Smirnov, Steinhauser '16] [Gluza, Mitov, Moch, Riemann '09]

 K_1, K_2

igstar C_1 to $\mathcal{O}(\epsilon^2)$, C_2 to $\mathcal{O}(\epsilon)$

$$C_1$$
 to $\mathcal{O}(\epsilon^4)$, C_2

 C_1 to $\mathcal{O}(\epsilon^4)$, C_2 to $\mathcal{O}(\epsilon^2)$, C_3 to $\mathcal{O}(\epsilon^0)$

[Gluza, Mitov, Moch, Riemann '09]

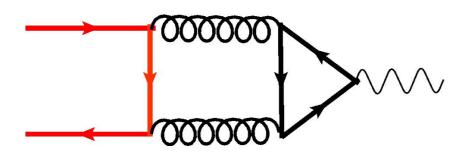
explicit computation

 A_4 became available recently

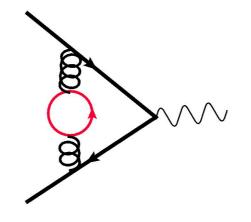
[Henn, Smirnov, Smirnov, Steinhauser '16] [Henn, Smirnov, Smirnov, Steinhauser, Lee '16]

COMMENTS: MASSIVE

Excludes singlet contributions



Excludes closed heavy-quark loops



Obey similar exponentiation

[KÜhn, Moch, Penin, Smirnov '01] [Feucht, KÜhn, Moch '03]

 \longrightarrow Sub-leading in large N_c limit

→ Hence, we have not considerer these

Massless Scenario

RG EQUATION: MASSLESS

• FF satisfies KG eqn

$$-\frac{d}{d \ln \mu^{2}} \ln \tilde{F}\left(\hat{a}_{s}, \frac{Q^{2}}{\mu^{2}}, \frac{m^{2}}{\mu^{2}}, \epsilon\right) = \frac{1}{2} \left[\tilde{K}\left(\hat{a}_{s}, \frac{m^{2}}{\mu^{2}}, \frac{\mu_{R}^{2}}{\mu^{2}}, \epsilon\right) + \tilde{G}\left(\hat{a}_{s}, \frac{Q^{2}}{\mu_{R}^{2}}, \frac{\mu_{R}^{2}}{\mu^{2}}, \epsilon\right) \right]$$

[Sudakov '56; Mueller '79; Collins '80; Sen '81]

Solved exactly the similar way

[Ravindran '06]

$$\ln \tilde{F}\left(\hat{a}_s, \frac{Q^2}{\mu^2}, \frac{m^2}{\mu^2}, \epsilon\right) = \sum_{k=1}^{\infty} \hat{a}_s^k \left[\left(\frac{Q^2}{\mu^2}\right)^{-k\epsilon} \hat{\tilde{\mathcal{L}}}_k^Q(\epsilon) + \left(\frac{m^2}{\mu^2}\right)^{-k\epsilon} \hat{\tilde{\mathcal{L}}}_k^Q(\epsilon) \right]$$

Up to 4-loop: present

[Moch, Vermaseren, Vogt '05]

5-loop solution

new!

RG EQUATION: MASSLESS

• Conformal theory $\beta_i = 0$: all order result

$$\hat{\tilde{\mathcal{L}}}_k^Q = \frac{1}{\epsilon^2} \left\{ -\frac{1}{2k^2} A_k \right\} + \frac{1}{\epsilon} \left\{ -\frac{1}{2k} G_k \right\}$$

[Bern, Dixon, Smirnov '05]

• FF

[TA, Banerjee, Dhani, Rana, Ravindran, Seth '17]

$$F = Ce^{\ln \tilde{F}}$$

Matching coefficient = 1

State-of-the-art results

F at 4-loop in large N_c

[Henn, Smirnov, Smirnov, Steinhauser, Lee '16]

New results in 1704.07846

F at 5-loop in large N_c and high energy limit

DETERMINING UNKNOWN CONSTANTS: MASSLESS

Determining unknown constants in large N_c limit

Comparing with explicit computations

$$\bigstar G_1$$
 to $\mathcal{O}(\epsilon^6)$, G_2 to $\mathcal{O}(\epsilon^4)$, G_3 to $\mathcal{O}(\epsilon^2)$

[Baikov, Chetyrkin, Smirnov, Smirnov, Steinhauser '09] [Gehrmann, Glover, Huber, Ikizlerli, Studerus '10]

$$G_4$$
 to $\mathcal{O}(\epsilon^0)$ new! F at 4-loop

[Henn, Smirnov, Smirnov, Steinhauser, Lee '16]

 \star $K_i = K_i(A_k, \beta_k)$ do not appear in the final expressions

→ get cancelled against similar terms arising from G

COMMENTS: MASSIVE & MASSLESS

G are same for massive and massless

[Mitov, Moch '07]

expected! Governed by universal cusp AD

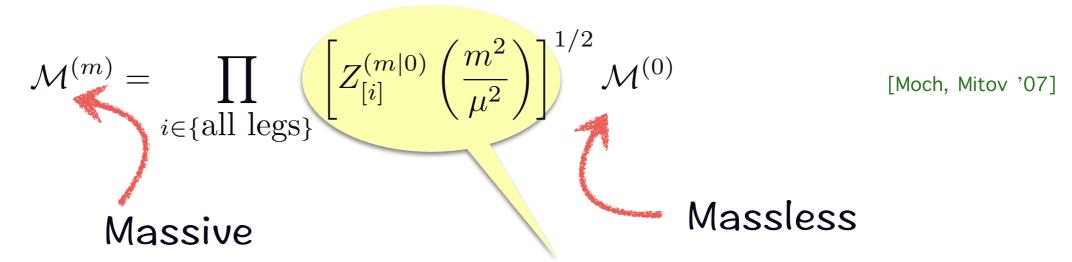
Manifestly clear in our methodology

$$\tilde{G}\left(\hat{a}_s, \frac{Q^2}{\mu_R^2}, \frac{\mu_R^2}{\mu^2}, \epsilon\right) = G\left(a_s\left(Q^2\right), \epsilon\right) + \int_{Q^2}^{\mu_R^2} \frac{d\mu_R^2}{\mu_R^2} A\left(a_s\left(\mu_R^2\right)\right)$$

- For massive K_i enter only into the poles of \mathcal{L}_k
 - \leadsto Constants and $\mathcal{O}(\epsilon^k)$ terms can be determined from massless calculation
 - → could lead to deeper understanding of the connection between massive & massless FF

PROCESS INDEPENDENT FUNCTION

• QCD factorisation: massive amplitudes shares essential properties with the corresponding massless ones in the high-energy limit



Universal and depends only on the external partons!

• Can be computed using simplest amplitudes: FF

$$Z_{[q]}^{(m|0)} = \frac{F(Q^2, m^2, \mu^2)}{\overline{F}(Q^2, \mu^2)}$$

- \bigstar Q^2 independence is manifestly clear: governed by G, same for massive & massless FF
- \star $\mathcal{O}(\epsilon^0)$ at 3-loop, upto $\mathcal{O}(1/\epsilon^2)$ at 4-loop \rightsquigarrow new!
- Relates dimensionally regularised amplitudes to those where the IR divergence is regularised with a small quark mass.

CONCLUSIONS

- ★ RG equations governing massive & massless quark-photon FF are discussed.
- ★ Elegant derivation for analytic solution is proposed key idea: use bare coupling
- \bigstar Q^2 dependence is governed by G & cusp AD: same for massive & massless
- ★ Massive: non-trivial matching coefficient C
- ★ Massive: F_1 at 4-loop in large N_c and high energy limit to $\frac{1}{\epsilon^2}$ Massless: F at 5-loop in large N_c and high energy limit to $\frac{1}{\epsilon^3}$