Reconciling EFT and hybrid calculations of the light MSSM Higgs-boson mass

Henning Bahl

Max-Planck Institut für Physik, München

based on 1706.00346 in collaboration with Sven Heinemeyer, Wolfgang Hollik and Georg Weiglein

> Loopfest XVI June 2, 2017 Argonne National Laboratory

Current situation:

▶ no direct evidence for BSM physics at LHC yet BSM models constrained by

- direct searches
- indirect constraints \rightarrow precision observables

One of the most common BSM models: MSSM

Special feature of MSSM

Mass of lightest $C\mathcal{P}$ -even Higgs M_h is calculable in terms of model parameters \Rightarrow can be used as a precision observable

► M_h is however heavily affected by loop corrections (up to ~ 100%)

To fully profit from experimental precision, higher order calculations are needed:

- ▶ Fixed-order techniques
 - diagrammatic approach status: $\mathcal{O}(\text{full 1L}, \alpha_s(\alpha_b + \alpha_t), (\alpha_b + \alpha_t)^2)$
 - effective potential approach status: same + partial three-loop results
- \rightarrow precise for low SUSY scales,

but for high scales large logarithms appear, $\ln \frac{M_{\text{SUSY}}}{M_t}$, spoiling convergence of perturbative expansion

Intro	FH with DR input	Determination of pole mass	Comparison to pure EFT code	
000000				

Alternative: EFT calculation

- ▶ integrate out all SUSY particles \rightarrow SM as EFT status: full LL+NLL, $\mathcal{O}(\alpha_s, \alpha_t)$ NNLL
- \rightarrow precise for high SUSY scales (logs resummed), but for low scales $\mathcal{O}(M_t/M_{\rm SUSY})$ terms are important

Intro	FH with $\overline{\mathrm{DR}}$ input	Determination of pole mass		
000000	00	0000	00000	0

Solution: Hybrid approach

Combine both approaches to get precise results for both regimes \rightarrow FeynHiggs (and FlexibleSUSY)

[HB, T. Hahn, S. Heinemeyer, W. Hollik, S. Paßehr, H. Rzehak, G. Weiglein]

Procedure in FeynHiggs:

- 1. Calculation of diagrammatic fixed-order self-energies $\hat{\Sigma}_{hh}$
- 2. Calculation of EFT prediction $2\lambda(M_t)v^2$
- 3. Combine both

$$\hat{\Sigma}_{hh}(m_h^2) \longrightarrow \hat{\Sigma}_{hh}(m_h^2) - \left[2v^2\lambda(M_t)\right]_{\log} - \left[\hat{\Sigma}_{hh}(m_h^2)\right]_{\log} = \\ = \left[\hat{\Sigma}_{hh}(m_h^2)\right]_{\text{nolog}} - \left[2v^2\lambda(M_t)\right]_{\log}$$

Current status

FeynHiggs includes state of the art EFT calculation (and state of the art fixed-order calculation)

- ▶ Full LL+NLL resummation
- ► $\mathcal{O}(\alpha_s, \alpha_t)$ NNLL resummation [HB & W. Hollik '16]
- ▶ Possibility for seperate EWino and Gluino thresholds

⇒ expected to see agreement with EFT codes for high scales, but so far still large discrepancies could be observed (e.g. J.V. Vega & G. Villadoro '15)

Two main origins found

- $\blacktriangleright \ \overline{\mathrm{DR}} \leftrightarrow \mathrm{OS} \ \mathrm{conversion}$
- determination of Higgs propagator pole

We focused on single scale scenario: $\tan \beta = 10, \ M_{\text{soft}} = \mu = M_A \equiv M_{\text{Susy}}, \ A_{b,c,s,e,\mu,\tau} = 0$ FeynHiggs mixed OS/\overline{DR} scheme \leftrightarrow EFT codes typically \overline{DR}

 \rightarrow for comparison parameter conversion necessary

Especially relevant: stop mixing parameter X_t (large impact on Higgs mass, large logarithms in conversion)

Procedure so far

- $\blacktriangleright X_t^{\overline{\mathrm{DR}}} \stackrel{\mathcal{O}(\alpha_s, \alpha_t, \alpha_b)}{\longrightarrow} X_t^{\mathrm{OS}}$
- ▶ Forget about $X_t^{\overline{\text{DR}}}$, use X_t^{OS} as 'new' input parameter

Problem: result contains resummed logarithms

 \rightarrow conversion induces additional logarithms not present in a genuine $\overline{\rm DR}$ calculation

tro **FH with DR input** Determination of pole mass Comparison to pure EFT code Conclusi 00000 **0●** 0000 0000 0000 0

 \rightarrow solution: optional $\overline{\mathrm{DR}}$ renormalization of fixed-order result

How is the pole mass determined?

EFT calculation

$$\begin{split} p^2 &- 2\lambda(M_t)v^2 + \hat{\Sigma}_{hh}^{\rm SM}(p^2) = 0 \\ &\to (M_h^2)_{\rm EFT} = 2\lambda(M_t)v^2 - \hat{\Sigma}_{hh}^{\rm SM}(m_h^2) \\ &- \hat{\Sigma}_{hh}^{\rm SM\prime}(m_h^2) \left[2\lambda(M_t)v^2 - \hat{\Sigma}_{hh}^{\rm SM}(m_h^2) - m_h^2 \right] + \dots \end{split}$$

Hybrid calculation

In limit $M_A \gg M_Z$ Higgs pole mass is determined by $p^2 - m_h^2 + \hat{\Sigma}_{hh}^{\text{MSSM}}(p^2) - [2v^2\lambda(M_t)]_{\log} - [\hat{\Sigma}_{hh}(m_h^2)]_{\log} = 0$ $\rightarrow (M_h^2)_{\text{FH}} = m_h^2 + [2v^2\lambda(M_t)]_{\log} - [\hat{\Sigma}_{hh}^{\text{MSSM}}(m_h^2)]_{\text{nolog}}$ $- \hat{\Sigma}_{hh}^{\text{MSSM}'}(m_h^2) \left([2v^2\lambda(M_t)]_{\log} - [\hat{\Sigma}_{hh}^{\text{MSSM}}(m_h^2)]_{\text{nolog}} \right)$ $+ \dots$

Comparison of logarithmic terms

In decoupling limit, we can split up MSSM self-energy

$$\hat{\Sigma}_{hh}^{\text{MSSM}}(m_h^2) = \hat{\Sigma}_{hh}^{\text{SM}}(m_h^2) + \hat{\Sigma}_{hh}^{\text{nonSM}}(m_h^2).$$

We straightforwardly obtain

$$\begin{split} \Delta^{\log} &\equiv (M_h^2)_{\rm FH}^{\rm log} - (M_h^2)_{\rm EFT}^{\rm log} \\ &= \left[\hat{\Sigma}_{hh}^{\rm nonSM\prime}(m_h^2) \right]_{\rm log} \left[\hat{\Sigma}_{hh}^{\rm MSSM}(m_h^2) \right]_{\rm nolog} \\ &- \hat{\Sigma}_{hh}^{\rm nonSM\prime}(m_h^2) \left[2v^2\lambda(M_t) \right]_{\rm log} + \dots \end{split}$$

Very similar for non-logarithmic terms.

Observation

vev counterterm appearing in 2L subloop-renormalization cancels 2L terms in Δ^{\log}

$$\frac{(\delta v^2)^{\text{MSSM}}}{v^2} = \frac{(\delta v^2)^{\text{SM}}}{v^2} - \hat{\Sigma}_{hh}^{\text{nonSM},(1)\prime}(m_h^2) + \mathcal{O}(v/M_{\text{SUSY}})$$

- ▶ Argument holds for all 2L contributions
- ► Full 2L calculation however not available \rightarrow induced terms of e.g. $\mathcal{O}(\alpha_t \alpha)$ are not compensated
- ▶ Likely also holds for higher loop orders

adapted determination of Higgs propagator pole to avoid these terms

 \rightarrow built into new FeynHiggs version (will appear soon)

Comparison to SUSYHD as exemplary EFT code

[J.P. Vega, G. Villadoro]

000000 00 0000 0		FH with $\overline{\mathrm{DR}}$ input	Determination of pole mass	Comparison to pure EFT code	
	000000	00	0000	0000	0

\longrightarrow overall very good agreement

Remaining differences

- derivation for small scales due to suppressed terms not captured in EFT framework
- constant shift due to different parametrizations of non-logarithmic terms (i.e. top mass and vev)

Comparison of uncertainty estimates

FeynHiggs

- ▶ variation of renormalization scale between $M_t/2$ and $2M_t$
- change of renormalization scheme; switch between OS top mass and SM MS top mass
- ► deactivating the resummation of bottom Yukawa coupling SUSYHD
 - ▶ variation of matching scale between $M_{\rm SUSY}/2$ and $2M_{\rm SUSY}$
 - ▶ switching between NNLO and NNNLO top Yukawa coupling
 - estimate of suppressed terms, $\mathcal{O}(M_t/M_{\rm SUSY})$

Uncertainty estimates

- comparable for vanishing stop mixing
- ▶ FeynHiggs's estimate larger for large stop mixing
 → due to reparametrization of top mass (non-logarithmic terms)
- estimate of SUSYHD of higher order non-logarithmic terms probably too low

Rule of thumb

- \blacktriangleright uncertainty of $\sim 0.5~{\rm GeV}$ for vanishing stop mixing
- uncertainty of $\sim 2 2.5$ GeV for large stop mixing

 \downarrow more precise fixed-order calculation (or higher order threshold corrections) needed to further reduce uncertainty

Conclusion

- ▶ $\overline{\text{DR}} \rightarrow \text{OS}$ parameter conversion induces large higher order terms when result contains large logarithms
- Observed cancellation of non-SM terms arising through the determination of the propagator pole with contributions of subloop-renormalization
- ▶ Taking into account these effects
 - \rightarrow excellent agreement of FeynHiggs with pure EFT codes found for high scales

₩

Shows that FeynHiggs provides precise predictions of M_h for both low and high SUSY scales

Future work: Investigation of more complicated scenarios with multiple scales

 $\substack{ \operatorname{Appendix} \\ \bullet \circ \circ }$

