Mass Dependence of Higgs Production at large P_{T}

Hong Zhang

In collaboration with Eric Braaten and Jia-Wei Zhang

> arXiv:1704.06620

LoopFest XVI, ANL, 2017/06/02

Higgs Effective Field Theory

Standard
Model

$$
\mathcal{L}=-\frac{m_{t}}{v} \bar{t} t h
$$

HEFT $\quad \mathcal{L}_{\text {eff }}=\frac{\alpha_{s}}{12 \pi v} G_{\mu \nu}^{A} G^{\mu \nu, A} h$

- Eliminate the scale m_{t}
- Reduce the number of loops by 1.
- Inclusive Higgs production cross section from gluon fusion has been calculated to NNNLO with Higgs EFT.

Anastasiou, Duhr, Dulat, Herzog, Mistlberger, PRL 2015

- Higgs + 1 jet, NNLO

Boughezal, Focke, Giele, Liu, Petriello, PLB 2015

- Higgs $+\geq 2$ jet, NLO

Higgs P_{T} Distribution

- Higgs EFT cannot be applied to large P_{T} Large \sqrt{s} and P_{T} can resolve the t-quark
- Higgs at large P_{T} is an important probe of BSM physics.
e.g. Schlaffer et al, Eur.Phys.J C 2014
- Calculation is very difficult with many scales $\left(\sqrt{s}, P_{T}, m_{t}, m_{H}\right)$

Higgs P_{T} distribution with physical top mass is available only at LO.
Ellis et.al., NPB 1988; Baur et.al., NPB 1990

- Lack of reliable SM prediction may compromise the search for new physics.

Data Are Coming!

See Ferrari's talk for more details

(a) $p_{T, \gamma \gamma}$ differential cross-section

- ATLAS and CMS start to measure Higgs production at large P_{T}.

ATLAS-CONF-2016-067
CMS-HIG-17-015

NLO Calculation with Massive Top

- Include both real and virtual corrections (e.g. $q \bar{q} \rightarrow H+g$)

Relevant scales: \sqrt{s}, m_{t}, m_{H}

- Separate scales to simplify NLO calculation Limit 1: $2 m_{t} \gg \sqrt{s}, m_{H} \quad$ Expand in $s / 4 m_{t}^{2}$ and $m_{H}^{2} / 4 m_{t}^{2}$ HEFT Limit 2: $\sqrt{s} \gg 2 m_{t}, m_{H} \quad$ Expand in m_{H}^{2} / s and $m_{t}^{2} / s \begin{aligned} & \text { Double } \\ & \text { Expansion }\end{aligned}$ Limit 3: m_{t} is arbitrary and $\sqrt{s} \gg m_{H} \quad$ Expand in m_{H}^{2} / s

Single Expansion

Mass Singularity

- Expansion is nontrivial due to mass singularity

Relevant scales: $\sqrt{s}, m_{t}, m_{H} \quad$ Expand in m_{H}^{2} / s and m_{t}^{2} / s
$>$ Non-analytic, e.g. $\log \left(s / m_{H}^{2}\right)$
$>$ Ratio of mass scales, e.g. $m_{H}^{2} / 4 m_{t}^{2}$

Mass Singularity

- Expansion is nontrivial due to mass singularity
Relevant scales: \sqrt{s}, m_{t}, m_{H}
Expand in m_{H}^{2} / s and m_{t}^{2} / s
$>$ Non-analytic, e.g. $\log \left(s / m_{H}^{2}\right)$
$>$ Ratio of mass scales, e.g. $m_{H}^{2} / 4 m_{t}^{2}$
Keep them untouched in the expansion

Mass Singularity

- Expansion is nontrivial due to mass singularity Relevant scales: $\sqrt{s}, m_{t}, m_{H} \quad$ Expand in m_{H}^{2} / s and m_{t}^{2} / s
$>$ Non-analytic, e.g. $\log \left(s / m_{H}^{2}\right)$
> Ratio of mass scales, e.g. $m_{H}^{2} / 4 m_{t}^{2}$

Keep them untouched in the expansion

- More ambitiously, we want the expansion (scale separation) before calculating Feynman diagrams.
Each diagram is simpler to calculate due to fewer scales.
- QCD factorization is a systematic framework to remove the small mass scales.

Setup of the Calculation

- As an example, we have calculated $q \bar{q} \rightarrow H+g$ at LO
$>$ Easy to calculate.
> Can compare with the full LO analytically.
- One relevant form factor at LO

$$
\begin{aligned}
\frac{1}{4 N_{c}^{2}} \sum|\mathcal{M}|^{2} & =\frac{2\left(N_{c}^{2}-1\right) g_{s}^{2} m_{t}^{2}}{N_{c}^{2}} \frac{t^{2}+u^{2}}{s\left(s-m_{H}^{2}\right)^{2}}\left|\mathcal{F}\left(s, m_{t}^{2}, m_{H}^{2}\right)\right|^{2} \\
\mathcal{F}\left(s, m_{t}^{2}, m_{H}^{2}\right) & =\frac{1}{(D-2) 4 m_{t}}\left(g_{\mu \nu}-\frac{p_{3 \mu}\left(P_{H}+p_{3}\right)_{\nu}}{P_{H} \cdot p_{3}}\right) \mathcal{T}^{\mu \nu}\left(P_{H}, p_{3}\right)
\end{aligned}
$$

LP Form Factor

- The leading terms in the expansion of the full form factor are called "leading power terms (LP)".
First consider the double expansion
- Expand the LO form factor in m_{H}^{2} / s and m_{t}^{2} / s, keeping all mass singularities.

$$
\begin{gathered}
\mathcal{F}^{\mathrm{LP}}\left(s, m_{t}^{2}, m_{H}^{2}\right)=\frac{g_{s}^{2} y_{t}}{16 \pi^{2}}\left(-\frac{1}{2} \log ^{2} \frac{-s-i \epsilon}{m_{t}^{2}}+2 \log \frac{-s-i \epsilon}{m_{t}^{2}}\right. \\
r \equiv \frac{m_{H}}{2 m_{t}}
\end{gathered}
$$

LP Form Factor

- The leading terms in the expansion of the full form factor are called "leading power terms (LP)".
First consider the double expansion
- Expand the LO form factor in m_{H}^{2} / s and m_{t}^{2} / s, keeping all mass singularities.

$$
\mathcal{F}^{\mathrm{LP}}\left(s, m_{t}^{2}, m_{H}^{2}\right)=\frac{g_{s}^{2} y_{t}}{16 \pi^{2}}\left[\begin{array}{r}
-\frac{1}{2} \log ^{2} \frac{-s-i \epsilon}{m_{t}^{2}}+2 \log \frac{-s-i \epsilon}{m_{t}^{2}} \\
r \equiv \frac{m_{H}}{2 m_{t}}
\end{array} \begin{array}{c}
-2 \arcsin ^{2} r-\frac{4 \sqrt{1-r^{2}}}{r} \arcsin r-2
\end{array}\right),
$$

- The dependence of mass ratio is non-trivial.
- All these terms must be reproduced with factorization formula

Leading Regions

- The regions of loop momentum integral giving LP terms are called "leading regions".
- Four leading regions: $\left(\sqrt{s} \gg m_{t}, m_{H}\right)$

Hard
(\sqrt{s})

Higgs
Collinear
$\left(\sqrt{s}, m_{t}, m_{H}\right)$

Gluon Collinear $\left(\sqrt{s}, m_{t}\right)$

Soft $\left(m_{t}\right)$

Factorization of Collinear Regions

- Higgs Collinear Region

$$
\int_{-1}^{+1} d \zeta \quad \widetilde{\mathcal{F}}_{t \bar{t}_{1 V}+g}(\zeta)
$$

$$
d_{t \bar{t}_{1 V} \rightarrow H}\left(\zeta ; m_{t}^{2}, m_{H}^{2}, P . n\right)
$$

> Hard production of massless $t \bar{t}$ in color-singlet Lorentz-vector channel Only depends on hard scale \sqrt{s}
> Collinear $t \bar{t}$ interact and produce the Higgs
Only depends on soft scales m_{t}, m_{H}
> Integrate over the relative longitudinal momentum of $t \bar{t}$ pair

- After factorization, we separate the scales before the calculation of Feynman diagrams

Factorization Formula

- LP factorization formula (Expand by both m_{H}^{2} / s and m_{t}^{2} / s)

$$
\begin{array}{r}
\mathcal{F}^{\mathrm{LP}}\left(s, m_{t}^{2}, m_{H}^{2}\right)=\widetilde{\mathcal{F}}_{H+g}(s)+\int_{-1}^{+1} d \zeta \widetilde{\mathcal{F}}_{t \bar{t}_{1 V}+g}(\zeta) d_{t \bar{t}_{1 V} \rightarrow H}\left(\zeta ; m_{t}^{2}, m_{H}^{2}, P_{H} \cdot n\right) \\
\quad+\int_{-1}^{+1} d \zeta \widetilde{\mathcal{F}}_{H+t \bar{t}_{8 T}}(\zeta) d_{t \bar{t}_{8 T} \rightarrow g}\left(\zeta ; m_{t}^{2}, p_{3} \cdot \bar{n}\right)+\mathcal{F}_{\text {soft }}\left(m_{t}^{2}\right)
\end{array}
$$

- All pieces can be calculated directly from Feynman diagrams with fewer scales.
- Although the full form factor is finite, each region is divergent. Dimensional regularization and rapidity regularization are used.

For more details, see Braaten, HZ and Zhang, arXiv:1704.06620

Hard Region

- LP factorization formula (Expand by both m_{H}^{2} / s and m_{t}^{2} / s)

$$
\begin{array}{r}
\mathcal{F}^{\mathrm{LP}}\left(s, m_{t}^{2}, m_{H}^{2}\right)= \\
\widetilde{\mathcal{F}}_{H+g}(s)+\int_{-1}^{+1} d \zeta \widetilde{\mathcal{F}}_{t \bar{t}_{1 V}+g}(\zeta) d_{t \bar{t}_{1 V} \rightarrow H}\left(\zeta ; m_{t}^{2}, m_{H}^{2}, P_{H} \cdot n\right) \\
\quad+\int_{-1}^{+1} d \zeta \widetilde{\mathcal{F}}_{H+t \bar{t}_{8 T}}(\zeta) d_{t \bar{t}_{8 T} \rightarrow g}\left(\zeta ; m_{t}^{2}, p_{3} \cdot \bar{n}\right)+\mathcal{F}_{\text {soft }}\left(m_{t}^{2}\right)
\end{array}
$$

$$
\left.\begin{array}{ll}
\prime P_{H} & m_{H}=m_{t}=0 \\
\underbrace{\prime}_{-} & \widetilde{\mathcal{F}}_{H+g}(s)
\end{array}\right) \int_{q} \frac{\operatorname{Tr}[\ldots]}{\left[\left(q+P_{H}\right)^{2}+i \epsilon\right]\left[q^{2}+i \epsilon\right]\left[\left(q-p_{3}\right)^{2}+i \epsilon\right]}
$$

> Only depends on S, no mass scale.

Higgs Collinear Region: Hard Coeff.

- LP factorization formula (Expand by both m_{H}^{2} / s and m_{t}^{2} / s)

$$
\begin{aligned}
\mathcal{F}^{\mathrm{LP}}\left(s, m_{t}^{2}, m_{H}^{2}\right)=\widetilde{\mathcal{F}}_{H+g}(s)+\int_{-1}^{+1} d \zeta \widetilde{\mathcal{F}}_{t \bar{t}_{1 V}+g}(\zeta) & d_{t \bar{t}_{1 V} \rightarrow H}\left(\zeta ; m_{t}^{2}, m_{H}^{2}, P_{H} \cdot n\right) \\
& +\int_{-1}^{+1} d \zeta \widetilde{\mathcal{F}}_{H+t \bar{t}_{8 T}}(\zeta) d_{t \bar{t}_{8 T} \rightarrow g}\left(\zeta ; m_{t}^{2}, p_{3} \cdot \bar{n}\right)+\mathcal{F}_{\mathrm{soft}}\left(m_{t}^{2}\right)
\end{aligned}
$$

$>$ Only depends on S, no mass scale.

Higgs Collinear Region: Distribution

- LP factorization formula (Expand by both m_{H}^{2} / s and m_{t}^{2} / s)

$$
\begin{aligned}
\mathcal{F}^{\mathrm{LP}}\left(s, m_{t}^{2}, m_{H}^{2}\right)= & \widetilde{\mathcal{F}}_{H+g}(s)+\int_{-1}^{+1} d \zeta \widetilde{\mathcal{F}}_{t \bar{t}_{1 V}+g}(\zeta) d_{t \bar{t}_{1 V} \rightarrow H}\left(\zeta ; m_{t}^{2}, m_{H}^{2}, P_{H} \cdot n\right) \\
& +\int_{-1}^{+1} d \zeta \widetilde{\mathcal{F}}_{H+t \bar{t}_{8 T}}(\zeta) d_{t \bar{t}_{8 T} \rightarrow g}\left(\zeta ; m_{t}^{2}, p_{3} \cdot \bar{n}\right)+\mathcal{F}_{\text {soft }}\left(m_{t}^{2}\right)
\end{aligned}
$$

Vector
Color-singlet

Physical m_{H} and $m_{t}, \quad p_{t}=\frac{1}{2} P_{H}+q, \quad p_{\bar{t}}=\frac{1}{2} P_{H}-q$

$$
\begin{aligned}
d_{t \bar{t}_{1 V \rightarrow H}} \propto & \int_{q} \frac{\delta\left(\zeta-2 q \cdot n / P_{H} \cdot n\right) \operatorname{Tr}[\ldots h] \operatorname{Tr}_{c}[\ldots 1]}{\left[\left(\frac{1}{2} P_{H}-q\right)^{2}-m_{t}^{2}+i \epsilon\right]\left[\left(\frac{1}{2} P_{H}+q\right)^{2}-m_{t}^{2}+i \epsilon\right]} \\
& \times\left[\frac{|q \cdot n|}{\nu_{+}}\right]^{-\eta}\left[\frac{\left|\left(q+P_{H}\right) \cdot n\right|}{\nu_{+}}\right]^{-\eta}
\end{aligned}
$$

$>$ Only depends on m_{H} and m_{t}
> Has rapidity divergence

Zero-Bin Subtraction

- Need zero-bin subtraction to remove the double counting of the collinear region and the soft region.
- Either quark line can be soft.

- After zero-bin subtraction

$$
d_{t \bar{t}_{1 V \rightarrow H}} \propto\left[-\frac{1}{2 \epsilon \eta_{\mathrm{uv}}} \delta\left(1-\zeta^{2}\right)+\frac{1}{\epsilon} \frac{\zeta}{\left(1-\zeta^{2}\right)_{+}}-\zeta \frac{\log \left(1-\left(1-\zeta^{2}\right) r^{2}\right)}{1-\zeta^{2}}\right]
$$

$>\eta_{\mathrm{uv}}$ is the rapidity regulator
$>$ Simple dependence on mass ratio $r \equiv \frac{m_{H}}{2 m_{t}}$

Higgs Collinear Region: Integration

- LP factorization formula (Expand by both m_{H}^{2} / s and m_{t}^{2} / s)

$$
\begin{array}{r}
\mathcal{F}^{\mathrm{LP}}\left(s, m_{t}^{2}, m_{H}^{2}\right)=\widetilde{\mathcal{F}}_{H+g}(s)+\int_{-1}^{+1} d \zeta \widetilde{\mathcal{F}}_{t \bar{t}_{1 V}+g}(\zeta) d_{t \bar{t}_{1 V} \rightarrow H}\left(\zeta ; m_{t}^{2}, m_{H}^{2}, P_{H} \cdot n\right) \\
\quad+\int_{-1}^{+1} d \zeta \widetilde{\mathcal{F}}_{H+t \bar{t}_{8 T}}(\zeta) d_{t \bar{t}_{8 T} \rightarrow g}\left(\zeta ; m_{t}^{2}, p_{3} \cdot \bar{n}\right)+\mathcal{F}_{\text {soft }}\left(m_{t}^{2}\right)
\end{array}
$$

- Focus only on the mass ratio term

$$
\begin{aligned}
& \widetilde{\mathcal{F}}_{t \bar{t}_{1 V}+g}(\zeta) \propto \zeta \\
& \quad d_{t \bar{t}_{1 V \rightarrow H}} \propto\left[\cdots-\zeta \frac{\log \left(1-\left(1-\zeta^{2}\right) r^{2}\right)}{1-\zeta^{2}}\right] \\
& \int_{-1}^{+1} d \zeta \frac{\zeta^{2}}{1-\zeta^{2}} \log \left(1-\left(1-\zeta^{2}\right) r^{2}\right)=-2 \arcsin ^{2} r-\frac{4 \sqrt{1-r^{2}}}{r} \arcsin r+4
\end{aligned}
$$

Soft Region

- LP factorization formula (Expand by both m_{H}^{2} / s and m_{t}^{2} / s)

$$
\begin{array}{r}
\mathcal{F}^{\mathrm{LP}}\left(s, m_{t}^{2}, m_{H}^{2}\right)=\widetilde{\mathcal{F}}_{H+g}(s)+\int_{-1}^{+1} d \zeta \widetilde{\mathcal{F}}_{t \bar{t}_{1 V}+g}(\zeta) d_{t \bar{t}_{1 V} \rightarrow H}\left(\zeta ; m_{t}^{2}, m_{H}^{2}, P_{H} \cdot n\right) \\
\quad+\int_{-1}^{+1} d \zeta \widetilde{\mathcal{F}}_{H+t \bar{t}_{8 T}}(\zeta) d_{t \bar{t}_{8 T} \rightarrow g}\left(\zeta ; m_{t}^{2}, p_{3} \cdot \bar{n}\right)+\mathcal{F}_{\text {soft }}\left(m_{t}^{2}\right)
\end{array}
$$

> Only the soft line has mass dependence

$$
\begin{aligned}
\mathcal{F}_{\text {soft }} & \propto \int_{q} \frac{\operatorname{Tr}[\ldots]}{[q \cdot \bar{n}+i \epsilon]\left[q^{2}-m_{t}^{2}+i \epsilon\right][q \cdot n-i \epsilon]}\left[\frac{|q \cdot(n-\bar{n})|}{\nu}\right]^{-2 \eta} \\
& \propto\left[\frac{\mu^{2}}{m_{t}^{2}}\right]^{\epsilon}\left[\frac{\nu}{2 m}\right]^{2 \eta} \frac{1}{\epsilon \eta_{\mathrm{UV}}}
\end{aligned}
$$

$>$ Only depends on m_{t}

Add All Regions

- All pieces are calculated directly from Feynman diagrams with fewer scales.
- Rapidity divergences cancel among two collinear regions and the soft region.
- $1 / \epsilon$ poles cancel when all four terms are added.
- Comparing with the full form factor, all LP terms are preserved, including the mass singularities.

For more details, see Braaten, HZ and Zhang, arXiv:1704.06620

Improved Top Mass Dependence

- Only expand by m_{H}^{2} / s, keep m_{t} an arbitrary scale Don't expand in m_{t}^{2} / s or m_{H}^{2} / m_{t}^{2}
- Same factorization formula, only the hard region needs to be modified
- Similar to simplified-ACOT scheme

For more details, see Braaten, HZ and Zhang, arXiv:1704.06620

Compare with Full Result

- The error of factorization formula decreases as \sqrt{s} increases.
- Reliable prediction for all kinematic region can be obtained by combining the factorization formula with HEFT.

Bottom Loop Contribution

- The factorization formula can also be used to calculate the contribution from a b-quark loop

Relevant scales: \sqrt{s}, m_{H}, m_{b}
Limit 1: Expand in both m_{H}^{2} / s and m_{b}^{2} / s
Limit 2: Expand only in m_{b}^{2} / s

- Separate the scales before calculating the Feynman diagrams. Much simpler to calculate.
- Comparing with the full form factor, all LP terms are preserved, including the mass singularities.

Compare with Full Result (b-quark loop)

- The error of factorization formula quickly decreases as \sqrt{s} increases.
- The expansion in only m_{b}^{2} / s gives a very good approximation to the full result ($<10 \%$ error over all kinematic region)

Next-to-leading Order (In Progress)

- Factorization formula

$$
\begin{array}{r}
\mathcal{F}^{\mathrm{LP}}\left(s, m_{t}^{2}, m_{H}^{2}\right)=\widetilde{\mathcal{F}}_{H+g}(s)+\int_{-1}^{+1} d \zeta \widetilde{\mathcal{F}}_{t \bar{t}_{1 V}+g}(\zeta) d_{t \bar{t}_{1 V} \rightarrow H}\left(\zeta ; m_{t}^{2}, m_{H}^{2}, P_{H} \cdot n\right) \\
\quad+\int_{-1}^{+1} d \zeta \widetilde{\mathcal{F}}_{H+t \bar{t}_{8 T}}(\zeta) d_{t \bar{t}_{8 T} \rightarrow g}\left(\zeta ; m_{t}^{2}, p_{3} \cdot \bar{n}\right)+\mathcal{F}_{\text {soft }}\left(m_{t}^{2}\right)
\end{array}
$$

$>$ Hard region: 3-point \& 2-loop, scale \sqrt{s} (and m_{t})
> Collinear regions:
Hard coeff.: 3-point \& 1-loop, scale \sqrt{s}
Higgs dist. amp.: 2-loop, scales m_{H} and m_{t}
Gluon dist. amp. : 2-loop, scales m_{t}
$>$ Soft region: 3-point \& 2-loop, scale m_{t}

Next-to-leading Order (In Progress)

- Factorization formula

$$
\begin{array}{r}
\mathcal{F}^{\mathrm{LP}}\left(s, m_{t}^{2}, m_{H}^{2}\right)=\widetilde{\mathcal{F}}_{H+g}(s)+\int_{-1}^{+1} d \zeta \widetilde{\mathcal{F}}_{t \bar{t}_{1 V}+g}(\zeta) d_{t \bar{t}_{1 V} \rightarrow H}\left(\zeta ; m_{t}^{2}, m_{H}^{2}, P_{H} \cdot n\right) \\
\quad+\int_{-1}^{+1} d \zeta \widetilde{\mathcal{F}}_{H+t \bar{t}_{8 T}}(\zeta) d_{t \bar{t}_{8 T} \rightarrow g}\left(\zeta ; m_{t}^{2}, p_{3} \cdot \bar{n}\right)+\mathcal{F}_{\text {soft }}\left(m_{t}^{2}\right)
\end{array}
$$

$>$ Hard region: 3-point \& 2-loop, scale \sqrt{s} (and m_{t})
> Collinear regions:
Hard coeff.: 3-point \& 1-loop, scale \sqrt{s}
Higgs dist. amp.: 2-loop, scales m_{H} and $m_{t} \quad 3$ diagrams!
Gluon dist. amp. : 2-loop, scales $m_{t} \quad 6$ diagrams!
$>$ Soft region: 3-point \& 2-loop, scale m_{t}

Summary

- For Higgs produced at large P_{T}, NLO result is still unavailable 30 years after LO.
- We have proposed a factorization formula which separates different scales before calculating Feynman diagrams.
- Each piece in the factorization formula is already available or easy to calculate.
- With the example $q \bar{q} \rightarrow H+g$, we show the factorization formula gives a very good approximation of the full result.
- Combined with HEFT, a reliable prediction of Higgs P_{T} distribution can be obtained at higher orders.
- The same method also shows great power to study the b-quark loop contribution.

Summary

- For Higgs produced at large P_{T}, NLO result is still unavailable 30 years after LO.
- We have proposed a factorization formula which separates different scales before calculating Feynman diagrams.
- Each piece in the factorization formula is already available or easy to calculate.
- With the example $q \bar{q} \rightarrow H+g$, we show the factorization formula gives a very good approximation of the full result.
- Combined with HEFT, a reliable prediction of Higgs P_{T} distribution can be obtained at higher orders.
- The same method also shows great power to study the b-quark loop contribution. Thank you!

Backup slides

Percentage Error (t-loop)

