

The 2017 CPAD Instrumentation Frontier Workshop, Albuquerque, 12-14 Oct 2017

Numerical simulations of silicon radiation detectors for HL-LHC: Sensor technologies and modeling of radiation damage

Timo Peltola ⁽¹ On behalf of the CMS collaboration ⁽¹Texas Tech University, Lubbock, TX

Outline

Motivation

- □ Sensor technology modelling
- **Radiation induced defects in silicon:** Modelling
- **Simulated defects:**
 - Bulk damage: Hadrons
 - Surface damage: γ-radiation
 - Bulk & surface damage: Charged hadrons
- $\Box Study for extreme \Phi defect model$
- Summary

Motivation: From LHC to HL-LHC

Sensor technology modelling

Timo Peltola - 2017 CPAD 10/12/2017

Simulated sensors: 2D & 3D designs

 \Box Pad & strip sensors: Constant E-field in 3rd dimension \rightarrow p-stop 2D structures sufficient for accurate results \rightarrow extend to real device dimensions by area factor □ Planar & 3D-columnar pixel sensors: 3D-design required for correct modeling of E-fields D n⁺ implant Individual p-stop nt D⁻ p⁻ substrate 55x55x200 µm³ 50x50 pixel sensor **MediPix E-field**

Radiation induced defects in Si: Modelling

Radiation damage in Si: Defect Parameters

□ Radiation (Φ_{eq} >1e13 cm⁻²) causes damage to Si crystal structure (Φ_{eq} = 1-MeV n_{eq}) □ Φ_{eq} >1e14 cm⁻² lead to significant degradation of CCE due to charge carrier trapping

Defect type	E _a [eV]	$\sigma_{\rm n}$ [cm ²]	$\sigma_{ m p}$ [cm ²]	N _t [cm ⁻³]	Effective
Acceptor	<i>E</i> _c - x ₁	O(1e-14)	O(1e-14)	η ₁ ·Φ + c ₁	model needed
Donor	$E_{v} + x_{2}$	O(1e-14)	O(1e-14)	$\eta_2 \cdot \Phi + c_2$	for simulation

Defect simulations: TCAD

- □ Motivation for Technology Computer-Aided Design (TCAD) simulations:
 - E-fields not possible to measure directly → Predict E-fields & trapping in irradiated sensors

 - Predictions for novel structures & conditions -> Device structure optimization

□ Principle for irradiated Si detector TCAD simulation:

- Minimized set:
 - 2 midgap levels DD & DA applied to reproduce & predict: Bulk generated current + E(depth) + trapping
 - **Surface damage:** Fixed charge density $Q_f @ SiO_2/Si$ interface w/ interface traps N_{it} of varying depth distributions

□ Sentaurus TCAD proton & neutron defect models for Φ_{eq} =1e14 ~ 1e15 cm⁻² @ T=253 K [1]

Defect type	Level [eV]	σ _e [cm²]	σ _h [cm²]	Concentration		Defect type	Level [eV]	σ _e [cm²]	σ _h [cm²]	Concentration
Deep acc.	<i>E_C</i> - 0.525	1e-14	1e-14	1.189*0 + 6.454e13		Deep acc.	<i>E_C</i> - 0.525	1.2e-14	1.2e-14	1.55 *Φ
Deep donor	$E_V + 0.48$	1e-14	1e-14	5.598*Ф - 3.959e14		Deep donor	E_{V} + 0.48	1.2e-14	1.2e-14	1.395 *Φ
$\begin{array}{c} \hline \textbf{back-up 5-6} \\ \hline \textbf{back-up 5-6} \\ \hline \textbf{Can trapping be explained in frame of 2-DL model? [2]} \\ \hline \textbf{\beta} \approx 5e-7 \ s^{-1}cm^2 \ \& \ \Phi = 1e14 \ cm^{-2} \rightarrow \tau = 20 \ ns \\ \hline \textbf{Trapping X-section } \sigma = 1e-14 \ cm^2, \ v_{th} = 2e7 \ cm/s \\ \hline \textbf{N}_t = 1/[\sigma v_{th} \tau] = 2.5e14 \ cm^{-3} \ or intro \ rate \ \eta(\textbf{N}_t) = 2.5 \end{array}$										

Simulated bulk damage: Hadrons

Edge-TCT: Neutron irradiated strip detector

CV/IV(p-on-n): 120 µm HGCAL DD-diodes

Irradiated HGCAL diodes: Expected CCE

- □ Neutron irradiated diodes w/ tuned parameters from measurement/simulation study
- □ Before irr.: CC from MIP injection @ RT & 500 V
- □ After irr.: CC from MIP injection @ T=253 K
- \rightarrow CCE = CC(after)/CC(before)

$\hfill\square$ Increased V \rightarrow 1 kV:

CCE(n-on-p) benefits more for all thicknesses (no SCSI)

Timo Peltola - HGCAL US Radiation Testing Meeting 09/12/2017

Signal rise time: Measured vs simulated

[3] E. Currás, et al., NIM A (2016)

Timo Peltola - 2017 CPAD 10/12/2017

Simulated surface damage: γ-radiation

MOS-structure: Measured & simulated V_{fb}

[4] J. Härkönen et al., 10th Hiroshima Symposium, 2015

Timo Peltola - 2017 CPAD 10/12/2017

Simulated bulk & surface damage: Charged hadrons

Bulk & surface damage: CCE(x)

Irradiated sensors: Study for extreme Φ defect model

T

CCE: $\Phi \ge 1e16 n_{eq} cm^{-2}$

□ 'Perugia model' (PM), Φ = (0.7-2.2)e16 n_{eq}cm⁻², T=248 K [5]

Reproduces measured CCE @ high Φ

PM vs NM: LC & E-field

- PM: CCE ok, LC & E-field profile not reproduced (deeper levels?)
- NM: ~LC & DP ok, CCE not reproduced (lower trap concentration?)

Summary

- Sensor technologies: All sensor types studied for HL-LHC (pad, strip, planar- & 3D-pixels) reproducable by simulation
- Modelling of radiation damage in Si bulk: Based on effective midgap levels (DA & DD) → Neutron & proton defect models up to ~1×10¹⁵ n_{eq}cm⁻² → Comprehensive set of simulated detector properties matching w/ measurement:
 - Bulk damage: E-field distribution (vs measured edge-TCT), LC, V_{fd}, CCE, TCT signal/rise time - reproduced
 - Surface damage: Q_f accumulation in alumina-Si interface combined simulation/measurement study
 - Bulk & surface damage: CCE(x), R_{int}, C_{int} reproduced
- Extreme **Φ** defect model: Study underway for model that reproduces measured/expected CCE, LC & E-field distribution @ $\Phi \ge 1e16 n_{eq}cm^{-2}$

Back-up 1: Defect model overview

Bulk damage

- □ V. Chiochia et al., [IEEE Trans. Nucl. Sci. NS-52 (2005) 1067]: <u>2 levels</u>
- □ M. Petasecca *et al.* [NIM A 563 (2006) 192–195]: <u>3 levels</u>
- Pennicard et al. [NIM A 592 (2008) 16–25]: <u>3 levels</u>, increased capture cross-sections σ_n , σ_p
- E. Verbitskaya et al. [JINST 7 C02061, 2012; and NIM A 658 (2011)]: <u>2 levels, avalanche multiplication</u>, 1D ("analytical") approach
- R. Eber [PhD Thesis, 2013]: <u>2 levels</u>

Surface damage

- G. Verzellesi, G. F. Dalla Betta [Nucl. Sci. Symp., 2000 IEEE (Vol.-1)]
- P. Claudio [IEEE Trans. ON Nucl. Sci., VOL. 53, NO. 3 (2006)]
- □ Y Unno et al., [NIM A 636 (2011) S118–S124]

Bulk & surface damage

- T. Peltola, [JINST 9 C12010, 2014]: <u>2 levels, +1 level in 2µm at surface</u>
- Delhi University [R. Dalal et al., Vertex 2014, 23rd RD50 CERN, Nov. 2013]: <u>2 levels + Q_F + N_{it}.</u>
- D. Passeri, et al., [NIM A 824 (2016) 443-445]: <u>3 levels</u>

Back-up 2: Electrical properties of point & extended defects relevant to detector operation

Defect Label		Assignment and particularities	Configurations and charge states	Energy levels (eV) & cross sections (cm ²)	Impact on electrical characteristics of Si diodes @ RT
E(30K)	•	Not identified extended defect Donor with energy level in the upper part of the bandgap, strongly generated by irradiation with charged particles. ^{10,29} Linear fluence dependence. ^{this work}	E(30K) ^{0/+}	E_c -0.1 $\sigma_n = 2.3 \times 10^{-14}$	Contributes in full concentration with positive space charge to $\ensuremath{N_{\text{eff}}}$
BD	ті •	<i>hermal double donor (TDD2)</i> - point defect Bistable donor existing in two configurations (A and B) with energy levels in the upper part of the bandgap, strongly	BD _A ^{0/++} BD _B ^{+/++}	$E_{c} - 0.225$ $\sigma_{n} = 2.3 \times 10^{-14}$ $E_{c} - 0.15$	It contributes twice with its full concentration with positive space charge to N_{eff} , in both of the
l _p	•	generated in Oxygen rich material. ^{24, 26, 27} Not identified point defect Suggestions: V ₂ O or a Carbon related center. ^{22-24, 10}	l _p +/0	$\sigma_n = 2.7 \times 10^{-12}$ $E_V + 0.23$ $\sigma_p = (0.5-9) \times 10^{-15}$	configurations No impact
	•	Amphoteric defect generated via a second order process (quadratic fluence dependence), strongly generated in Oxygen lean material. ^{22-24, this work}	I _p ^{0/-}	$\begin{array}{l} {\sf E}_{\rm C} \mbox{ - } 0.545 \\ {\sigma}_{\rm n} \mbox{ = } 1.7 \ \mbox{ x10}^{\mbox{ - } 15} \\ {\sigma}_{\rm p} \mbox{ = } 9 \ \mbox{ x 10}^{\mbox{ - } 14} \end{array}$	Contributes to both N_{eff} and LC
E ₇₅	Ті •	<i>ri-vacancy</i> (V_3) - small cluster Bistable defect existing in two configurations (FFC and PHR) with	FFC V ₃ ^{-/0}	E _c - 0.075eV σ _n = 3.7x10 ⁻¹⁵	No impact
E4		acceptor energy levels in the upper part of the bandgap. $^{10,\ 28,\ 30-}_{33}$	PHR V ₃ =/-	$E_c - 0.359$ $\sigma_r = 2.15 \times 10^{-15}$	No impact
E5	•	Linear fluence dependence. this work	PHR V ₃ - ⁷⁰	$E_{c}^{-} - 0.458$ $\sigma_{n} = 2.4 \times 10^{-15}$ $\sigma_{n} = 2.15 \times 10^{-13}$	Contributes to LC
H(116K)	•	Not identified extended defect Acceptor with energy level in the lower part of the bandgap. ^{10, 29} Linear fluence dependence. ^{this work}	H(116K) ^{0/-}	\mathcal{E}_{V}^{F} + 0.33 σ_{p} =4 x 10 ⁻¹⁴	Contributes in full concentration with negative space charge to $\ensuremath{N_{\text{eff}}}$
H(140K)	• •	Not identified extended defect Acceptor with energy level in the lower part of the bandgap. ^{10, 29} Linear fluence dependence. ^{this work}	H(140K) ^{0/-}	$E_v + 0.36$ $\sigma_p = 2.5 \times 10^{-15}$	Contributes in full concentration with negative space charge to $\ensuremath{N_{eff}}$
H(152K)	• •	Not identified extended defect Acceptor with energy level in the lower part of the bandgap. ^{10, 29} Linear fluence dependence. ^{this work}	H(152K) ^{0/-}	$E_v + 0.42$ $\sigma_p = 2.3 \times 10^{-14}$	Contributes in full concentration with negative space charge to $\mathrm{N}_{\mathrm{eff}}$
_					· · · · - · · · · · · · · · · · · · · ·

Consistent set of defects observed after p, π , n, γ and e irradiation

[R.Radu et al., J. Appl. Phys. 117, 164503, 2015]

Back-up 3: Defect Characterization Overview

□ **Trapping:** Indications that E205a and H152K (midgap levels) are important

 \Box Consistent set of defects observed after p, π , n, γ and e irradiation

□ Understanding of defect properties/macroscopic effects is essential for the implementation of defect simulation

Back-up 4: Defects in silicon: Overlook

□ 11 defect levels proved to influence

Energy levels from Thermally

for simulation

performance of irradiated Si detectors (see

back-up 2-3) → Effective model is needed

- Each defect: Energy level in Si bandgap or variety, depending on conglomeration of defects
- Multitude of E-levels, cross sections & concentrations: huge parameter space to model
 - Stimulated Current (TSC) measurement Point defects of crystals E_/2 Epi-St 200 levels in the band-gap (eV) 0.424 0.42 H152K 150 0.36 H140K temperature (K) 0.33 H116K[™] BD^{0/++} 0.225 100 Vacancy Interstitial impurity Self-interstitial 0.176 50 0.079 E30K^{0/} E_/E 20 60 40 0 tsc-signal (pA) Substitution impurity Frenkel defect H defects: [I. Pintilie et al., Appl. Phys. Lett. 92, 024101 (2008)] www.substech.com BD: [I. Pintilie et al., NIM A 514, 18 (2003)] & [I. Pintilie et al., NIM A 556, (1), 197 (2006)] & [E. Fretwurst et al., NIM A 583, 58 (2007)] [R. Eber, 8th Detector Workshop, Berlin, 2015] E30: [I. Pintilie et al., NIM A 611, 52-68 (2009)]

Back-up 5: TCAD - Bulk defect models

Current

charge

[R. Eber, 8th Detector

essentially

carrier type

from σ of one

1st constraint given by V_{fd} → set a ratio of donors to acceptors to match → tune the current again → repeat until match with measured CV, IV →
 Result: Trap concentration(c_{test}, σ_{test}, α) for given Φ → c(Φ) by linear fit

1e-12

Current / 300hm³ (A) 1e-13 (A) 1e-15 Generated Current of Defects

 $c_{test} = constant$

- σ(e, Donor) - σ(h, Donor)

 $\sigma(e, Acceptor)$

 $\sigma(h, Acceptor)$

Delect	Level	υ _e	U _h	Concentration	Delect typ		U U e	0 _h	Concentration
type	[eV]	[cm ²]	[cm ²]	[cm ⁻³]		[eV]	[cm ²]	[cm ²]	[cm ⁻³]
Deep acc.	<i>E</i> _C - 0.525	1e-14	1e-14	1.189* Φ + 6.454e 13	Deep acc.	<i>E</i> _C - 0.525	1.2e-14	1.2e-14	1.55*Φ
Deep donor	$E_V + 0.48$	1e-14	1e-14	5.598*Ф - 3.959e14	Deep donc	r $E_V + 0.48$	1.2e-14	1.2e-14	1.395*Φ

 \Box Sentaurus defect models for $\Phi_{\rm eq}$ =1e14 ~ 1e15 cm^-2 @ T=253 K

[R. Eber, PhD Thesis, KIT, 2013]

Back-up 6: DP & LC for neutron & proton defect models

Back-up 7: Method for simulated edge-TCT

- TCAD simulated edge-TCT collected charges Q(z) for non-irradiated 320 µm p-on-n strip detector @ V<V_{fd} & V>V_{fd}, T = 293 K
- □ **Dashed vertical lines:** Active region of detector (defined from center of rising & descending slopes of Q(z) distribution) → Different E-field extensions into bulk from pn-junction at z=0 are reflected by Q(z)
- □ Differences in Q(z) amplitude: Reproduced by using laterally extended device structure → extension of E-field to detector edges

Back-up 8: CCE & Trapping: Strips

□ Measured CCE: n-on-p strip sensors in CMS test beam

Simulated CCE for 2-trap models with tuned Q_f

Red/black: Tuned Q_f to reproduce measured CCE/Extra-/interpolated Q_f

Φ _{eq} [cm ⁻²]	Q _f (n) [cm ⁻²]	Q _f (p) [cm ⁻²]
1e14	6e10	1.4e11
3e14	-	3e11
4e14	9e10	-
8e14	3.25e11	7.1e11
1.3e15	6e11	-
1.4e15	-	1.2e12

Measured CCE of 300 & 200 µm strips reproduced by simulation →
 Fixed Q_f to predict CCE of unmeasured detectors w/ equal irradiation type/dose to measured

Back-up 9: Signal rise t: Simulated p-on-n/n-on-p

Back-up 10: Signal rise t: Optimization

Back-up 11: C_{int} : N_{int} vs non-unif. 3-level model @ Φ_{eq} =1.4e15 cm⁻²

- $\hfill\square$ Device structure corresponding to previous slide
- Dashed lines: Q_f values where CCE loss between strips matches measurement
- □ 3-level model @ 2 µm from surface:
- Geometrical value ~1.8 pF/cm reached within 0-400 V when CCE loss matches measurement
 Interface traps:
- Geometrical value reached within 180 V -1 kV when CCE loss matches measurement
- Over O(1) higher initial values at high Q_f

□ Measurement: C_{int} ~1.8 pF/cm reached at 0 V

Back-up 12: C_{int} : N_{int} vs non-unif. 3-level model @ Φ_{eq} =3e14 cm⁻²

- Device structure corresponding to previous slide
- □ 3-level model @ 2 µm from surface:
- Geometrical value ~1.8 pF/cm reached at 0 V when CCE loss matches measurement
- □ Interface traps:
- Geometrical value reached at low V up to Q_f =1e12 cm⁻² (no match with measured CCE loss)
- □ Measurement: C_{int} ~1.8 pF/cm reached at 0 V

 \Rightarrow

Conclusion from slides 7-10: Deeper distribution of shallow acceptors reproduces measured CCE loss between strips & C_{int} more closely

Back-up 13: Non-unif. 3-level model R_{int} & C_{int}

- \square Non-unif. 3-level model can be tuned to equal bulk properties (TCT, V_{fd} & $I_{leak})$ with proton model \rightarrow suitable tool to investigate CCE(x)
- 3-level model within 2 µm of device surface + proton model in the bulk: R_{int} & C_{int} in line with measurement also at high fluence & Q_f

3-level model within 2 μm of device surface

Type of	Level	$\sigma_{ m e}$	$\sigma_{ m h}$	Concentration
defect	[eV]	[cm ²]	[cm ²]	[cm ⁻³]
Deep acc.	<i>E_C</i> - 0.525	1e-14	1e-14	1.189* Φ + 6.454e 13
Deep donor	E_{V} + 0.48	1e-14	1e-14	5.598*Ф - 3.959e14
Shallow acc.	<i>E_C</i> - 0.40	8e-15	2e-14	40 [*] Φ

□ Effect of acceptor traps in non-unif. 3-I. model is clearly visible: -

O(5) lower electron density to proton model between strips

 \square Strips are isolated at V=0 for Φ_{eq} =5e14 cm $^{-2}$ as in real detectors \slash

Back-up 14: Bulk & surface damage: CCE(x)

[T. Peltola, JINST 9 (2014) C12010 & T. Peltola et al., JINST 10 (2015) C04025]

Back-up 15: Measured & simulated CCE(x)

□ 3-level model within 2 µm of device surface + proton model in bulk:

- R_{int} & C_{int} in line with measured also at high fluence & Q_f
- Tunable to equal bulk properties (TCT, V_{fd} & LC) with proton model
- \rightarrow suitable tool to investigate CCE(x)

[T. Peltola, PSD10, 2014] Simulated CCE(x) compared to measured: 45 --Measurement: 26.5+-1.1% 1.4e15 n_{ea}cm⁻² (mixed) 45 40 ——CCE loss(Qf) 5 strips, 273 K 40 35 CCE loss(Qf) 5 strips, 253 K ³⁵ ک Cluster CCE loss [%] 30 25 20 15 30 30 25 20 15 Measured: FZ/MCz 200P/Y ---Measurement: 30+-2% 3e14 n_{ea}cm⁻² (p+) 10 10 Measured: FZ200P/Y, MCz200P -CCE loss(Qf) 5 strips, 253 K 1.1E+12 1.3E+12 1.5E+12 1.7E+12 1.9E+12 2.1E+12 2.3E+12 9.0E+11 1.0E+11 3.0E+11 5.0E+11 7.0E+11 9.0E+11 1.1E+12 Qf[cm-2] Qf[cm-2] Q_f=(8.5±1.0)x10¹¹ cm⁻² $Q_{f} = (1.6 \pm 0.2) \times 10^{12} \text{ cm}^{-2}$

Interpretation: Irradiation produces non-uniform distribution of shallow acceptor traps close to detector surface → greater drift distance, higher trapping of charge carriers Observation: Heavily irradiated strip detectors demonstrate significant position dependency of CCE

Preliminary parametrization for $\Phi = 3e14 - 1.4e15$ cm⁻²

Type of defect	Level [eV]	σ _e [cm²]	σ _h [cm ²]	Concentration [cm ⁻³]
Deep acceptor	<i>E_C</i> - 0.525	1e-14	1e-14	1.189* Φ + 6.454e 13
Deep donor	E_{V} + 0.48	1e-14	1e-14	5.598*Ф - 3.959e14
Shallow acceptor	<i>E_C</i> - 0.40	8e-15	2e-14	14.417*Φ + 3.168e16