Frequency Multiplexing Readout for Transition-edge Sensors

Aritoki Suzuki

Lawrence Berkeley National Laboratory October 14th 2017

Overview

- 1. How it works
- 2. Current implementation
- 3. Future R&D

Motivation

POLARBEAR-2 Focal Plane

- SPT-3G Focal Plane
- Current CMB experiments' detector counts are ~10,000
- Detectors are at 250 mK, SQUID amplifiers are at 4 Kelvin
- Reduce number of wires between 4 K and 250 mK stages
- Reduce amount of readout electronics

Frequency multiplexing: Basic Idea

- 1. TES is a low impedance device \rightarrow voltage bias \rightarrow measure current (A = ammeter)
- 2. Send in multiple tones. LCR resonators separate frequencies
- 3. Measure current. Demodulate output for a signal

Frequency multiplexing: Operation

- 1. Warm electronics synthesizes multiple frequency tones
- 2. Shunt resistor set voltage bias
- 3. Superconducting resonators assign frequency to each TES bolometer
- 4. SQUID and opamps amplifies signal
- 5. Warm electronics demodulates signal

[1] M. A. Dobbs *et al.,* "Frequency multiplexed superconducting quantum interference device readout of large bolometer arrays for cosmic microwave background measurements," Rev. Sci. Instrum. vol. 83, 073113, (2012).

Room Temperature Electronics

SQUID controller

[1] K. Bandura et al., ICE: a scalable, low-cost FPGA-based telescope signal processing and networking system J.Astron.Inst. 05 (2017) no.04, 1641005 arXiv:1608.06262

- ICE board
 - Xilinx Kintex-7 FPGA
 - 20W ~ 60W power consumption
 - Currently designed to multiplex up to 128 channels
- DfMUX mezzanine board
 - Two 16-bit DACs operating at 20 MSPS (50 MSPS available)
 - One 14-bit ADC operating at 20 MSPS (50 MSPS available)
 - Anti-aliasing filter
- 10 MHz SQUID controller
 - Tunes SQUID, first stage 300 K amplification

4 Kelvin Electronics

- Bias circuit
 - 30 milli-Ohm shunt resistor
- squid
 - Series SQUID array
 - High transimpedance (500 V/A) and low input inductance (< ~50 nH)
 - **Digital Active Nulling (DAN) feed back system** nulls current flow into the SQUID for nonlinear SQUID operation

[1] Tijmen de Haan *et al.,* "Improved Performance of TES Bolometers using Digital Feedback," Proc. SPIE 8452, 84520E (2012), DOI 10.1117/12.925658.

CPAD Workshop 2017

Sub-Kelvin Electronics

LC resonators

TES detector array

- LC resonators
 - Lithographed monolithic superconducting metal on silicon
 - Spiral inductors (L), interdigitated capacitors (C)
- TES detector array
 - TES bolometer with normal resistance of ~1 Ohm

[1] K. Rotermund et al., "Planar Lithographed Superconducting LC Resonators for Frequency-Domain Multiplexed Readout Systems," JLTP 184 (2016)

Frequency multiplexing, IV Curve

- Multiplexing chip
 - x40 (POLARBEAR-2/Simons Array), x68 (SPT-3G)
 - High 90's % yield
 - Logarithmic frequency spacing for cross-talk
 - Resonant peak scatter meets cross-talk requirement (Δf > 20 kHz)
- Bolometer tuning
 - ~15,000 TES bolometers deployed and biased in field (SPT-3G at South Pole)

[1] Bender, A. N., Cliche, J.-F., de Haan, T. et al. [2014] "Digital frequency domain multiplexing readout electronics for the next generation of millimeter telescopes," Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy VII, p. 91531A, doi:10.1117/12.2054949, arXiv:1407.3161.

R&D for Next Generation Experiment

Detector count is increasing by order(s) of magnitude for next generation CMB experiment

- 1. Improve performance
- 2. Increase multiplexing factor
- 3. Simplify assembly process

Stage-II (~1,000 det) to Stage-III (~10,000 det)

1. Increased multiplexing factor

- Increased total bandwidth
- Increased frequency comb packing density

2. Simplified assembly

- Integrated more components onto a single chip
- Automated packaging by a company

Hand soldered surface mount capacitor by students

Assembled with automatic wire bonder by company

Improve Performance

Current scheme

Bias Circuit + LCs + Detector Array at 100 mK stage

- Reduce parasitic impedances
 - Cables between temperature stages add parasitic impedance
 - ightarrow Integrate components at mK stage
 - SQUID input coil
- Key technologies:
 - Reactive divider circuit
 - Low power dissipation SQUID
 - Low input inductance SQUID

112 Series SQUID array fabricated by STAR cryoelectronics (Boyd et al.)

[1] Series SQUID Array Amplifiers Optimized for MHz Frequency-Domain Multiplexed Detector Readout, S. T. P. Boyd et al., LTD-17 (2017)

Increase Multiplexing Factor

- Increase frequency packing density
 - Reduced parasitic allow higher packing density (log \rightarrow linear spacing)
 - Learn to deal with cross-talk
 - Invert correlation matrix to deal with cross-talk in data analysis
- Increase total bandwidth
 - Reduced parasitic impedance allow us to explore higher frequency
 - SQUID operation at higher frequencies (SBIR: STARCryo)

Simplify Packaging

- Reduce number of parts
 - Increase packing density by decreasing component size
 - Push on resolution of lithography
 - Explore new lumped reactive element design (example: parallel capacitor)

[1] Lithographed Superconducting Resonator Development for Next Generation Frequency Multiplexing Readout of Transition-edge Sensors. Faramarzi et al., LTD-17 (2017)

CPAD Workshop 2017

Integrate with Detector Wafer

- Integrate cryogenic readout electronics and detectors on a single wafer, Microfabricate simultaneously
 - Removes assembly process
 - Challenges:
 - Finite space on a wafer \rightarrow R&D decrease component size
 - Compatibility of readout electronics fabrication and detector fabrication
 - Yield
 - Proto-type fabrication
 - LDRD support and SBIR with HYPRES and StarCRYO electronics

Summary

- Frequency multiplexing readout enabled multiple kilo-pixel CMB experiments
- Multiple developments were made to meet demand of current generation experiment
- Similar scale up will be important for next generation experiment
 - Improve performance
 - Increase multiplexing factor
 - Simplify packaging
 - Integrate readout electronics with detector wafer