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Obligatory Pileup Slide
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Rate

Particles / Hits

LHC HL-LHC

* Store full time sequence of drops until trigger (not collect in a bucket)
* Can quantify rate as memory bits / area / time 

(note: no mention of pixel size)
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Radiation

FCC
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Readout Chip Evolution
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10 yrs ago today HL-LHC

<1 Gbps/cm2 5 Gbps/cm2 40 Gbps/cm2

(looks more like commercial chip)

Another way to say memory per unit area: Logic Density. 
We follow Moore’s Law.
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Collaborative Design
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(looks more like commercial chip)

Single 
institute
team

2nd RD53 meeting. Oxford 2014
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Digital on Top

digital 

HL-LHC

(looks more like commercial chip)
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Concept Slide from Pixel 2012

Design procedure is closer to writing and compiling code
Than to drawing.
Heavy use of automated tools and modeling
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One RD53A Chip Core

One flat synthesized circuit
Each pixel is different !

Whole block is stepped
and repeated

~ 200k transistors
Size chosen so it CAN  
be SPICE simulated
(ask Dario how long it runs)

(routing dominated re: metal stack)
(both A and D substrate isolation)
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RD53A submitted

2cm

1.2cm

400 x 192 pixels

Expect delivery of 12 wafers (300mm dia.)  late November
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Development Model

Generate 
top level

Verify &
simulate

  submit

 Fix
 bugs

Digital
flow

Custom
blocks
(hard I_)

Radiation
models

Simulation
framework

Verilog
Blocks
(soft I_)

Analog
front ends

Digital
library

library

Radiation
work group

Analog
work group

Simulation
work group

Physics 
input specs Ref.

manual

Top Level
work group

Digital
work group

Testing
work group

I_
work group



11CPAD 2017  – M. Garcia-SciveresOct. 12, 2017

Development/Design Time
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~2 years
(included many
small test chip 
submissions
and test)

~3 months
(will go faster
next time 
around)

>6 months!
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Multiple Chips
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Rad Hard Logic Density Scaling

65nm

130nm

0.25um
ELT

Not quite minimum size due to pesky radiation damage

28nm ? 



14CPAD 2017  – M. Garcia-SciveresOct. 12, 2017

STI, Gate, Spacer
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RINCE: STI damage

Radiation Induced Narrow Channel Effect

Wide Transistor

Narrowest Transistor

1Grad

PMOS

NMOS
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RISCE: spacer damage

Radiation Induced Short Channel Effect

Long Transistor

Shortest Transistor

NMOS PMOS
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Temperature, Time, Dose rate, Process

It DOES work up to 1Grad

Analog circuits no problem. Several test chips irradiated this high and work fine 

Digital (small transistors)
If you operate cold, you don’t heat it up under power (just like sensors), 
low dose rate is not worse than expected, and you don’t get unlucky with process

We will have RD53A chips working 
after 1Grad (if it works at all), 
but we only guaranteed specs 
up to 500Mrad. See  Sandeep’s talk

Radiation damage must be simulated
and treated like other design corners 



18CPAD 2017  – M. Garcia-SciveresOct. 12, 2017

New concerns: 
Low dose rate is not so low

Retuned at 1 Mrad

Effect from temp 
increase to 20°C

1 Mrad per run at HL-LHC !   But dose rate here was ~5x higher than at HL-LHC

Threshold Dispersion vs. Dose

PoS ICHEP2016 p. 272
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Self-tuning threshold

Nucl. Instrum. Meth.  A867 (2017) p. 209-214

● Adjust each pixel threshold to a 
constant rate of noise hits

● Noise hits are selected by topology 
(isolated)

● Selection does not need to perfect- 
can be quite poor even. 
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SEU

● Traditional approach of memory SEU hardening is dead
● Upset rate gets too high even with hardening  

● Still need to harden logic / controls: incorporated into synthesis

● A digital chip does not need SEU-hard storage

● Continuously reprogram everything

– Plenty of bandwidth, plenty of processing power to handle triggers and 
reconfiguration at the same time

● Interestingly, ATLAS pixel operation already trying to do this as best we can. Not the 
way operation was envisioned, but reset/reconfigure everything one can every 5s 
gives most stable operation
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SEU hardened logic synthesis
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Other points (not rate or radiation)

● Single pixel gets “easier” due to smaller capacitance
(eg. no timewalk)

● But total power budget gets more challenging
(capacitance per unit area goes up- scales with perimeter, not area)

● At what point should we go binary?
● High bandwidth data transmission. Data compression.  

arXiv:1710.02582

https://arxiv.org/abs/1710.02582
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Where next?

● Higher logic density
● Higher radiation dose
● Smaller pixels
● More functionality

28nm to 1Grad

● R&D into smaller 
features

● Followed by another 
collaboration to make 
next gen. chip
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Conclusion

● Model worked well, but aske me again end of November after we 
have the chip back

● RD53 has now been promoted to “job shop” to deliver production 
chips to ATLAS and CMS

● Model was set up to allow multiple “top levels” from the begining
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B A C K U P



26CPAD 2017  – M. Garcia-SciveresOct. 12, 2017

Single Pixel Perspective
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Hits ~50 kHz 

● For 50um x 50um HL-LHC pixels up to 3Ghz / sq. cm. In ATLAS / CMS
● Need to save these hits FOR ENTIRE TRIGGER LATENCY (12s up from 6s)
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On-Chip Storage and Trigger
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IC Electronics Radiation Damage

● Change in effective doping is insignificant, because doping levels 
in CMOS transistors are very high. 

● All radiation damage effects to CMOS are due to parasitic electric 
fields form charge trapped in oxides and oxide-silicon interfaces

● Meet the oxides:
● Gate oxide

● Field Oxide

● Buried Oxide (only for SOI)

● Shallow trench Isolation (STI)

● Gate Spacer


