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The ATLAS detector at CERN

Event display at 
the detector



Imaging the hits in the calorimeter

v Red circles are denoting electrons & Black rectangles are the jets at calorimeters 
above.

Hadronic calorimeter EM calorimeter



Strategy for using Machine learning techniques for 
object identification

Ø Firstly we dumped the object information from Zee, Zmumu, Ztautau events 
for the leptons and jet into subimages.

Ø Then we constructed a model of 2D Convolutional neural network following 
a popular ’Image classification model’ of Cifar10.

Ø When we succeeded to have a working model, we extended our model for 
classifying objects of 4 classes I.e; Electrons, Muons, Tau leptons and Jets.

Ø Then we started playing with hyper parameters (Training rate, decay rate, 
batch size, number of epochs, loss functions, optimizers etc.) to optimize the 
accuracy of the model.



How our model of Convolutional neural network 
works

Ø Our model is quite similar to the popular Cifar10 model.

Ø Our model has two channels : E.M & Hadronic.

Ø We have some layers of specific window sizes.

Ø We are also having different operations like  MaxPooling, Flattening, Densing, Drop out 
etc.

Ø Our model uses ‘loss functions’ for the model while running.

Ø Also we it uses (different) ‘Optimizers’ to minimize the ‘loss function’ and to optimize the 
output of the model.

Ø And we have divided all the sub images into ‘Training data’ & ‘Testing data’ and within 
training data, used 20 percent of it for internally validating while it trains the model.

An example how image classification works using CNN



Some plots of ‘model accuracy’ and ‘loss’

Some improvements 
while playing with 
parameters :

Results became 
better with more 
number of epochs

When we first started 
while have issues with 
proper mapping :



Varying the different ‘optimizers’ for model accuracy

Optimizer :RMSprop Optimizer : SGD Optimizer : Adam



Experimenting with layers

Adding (Conv2D(128, (3, 3))) (Conv2D(32, (3, 3)))-> (Conv2D(64, (3, 3)))  
Dropout : 0.5, 0.25, 0.5  

Activation (relu) -> Activation(selu) Activation (selu) -> Activation(relu)
Dropout : 0.5, 0.5, 0.5



Varying the different ‘loss functions’ and ‘number of 
epochs’ for model accuracy

Loss function : Categorical Cross entropy Loss function : Mean squared Error

Loss function : Categorical Cross entropy Loss function : Mean squared Error

For 200 
Epochs : 

For 500 
Epochs : 



Some ‘testing’ results from our  best model

Our best model in terms of accuracy has the 
following parameters :

Testing electrons

Testing Tau leptons

Testing Muons

Testing Jets
Optimizer : RMSprop
Learning rate=0.0001,
decay=1e-5
Loss = Categorical 
crossentropy

True label : Electron

class 0 (electron)  class 1(jet)    class2(muon)  class3(tau lepton)
98.5014975 0.001655       0.0005293         1.4963153            

True label : Muon

class 0 (electron)  class 1(jet)    class2(muon)  class3(tau lepton)
.0001563            .0032537        95.1616049 4.834976            

True label : Jet

class 0 (electron)  class 1(jet)    class2(muon)   class3(tau lepton)
0.0004065              99.891948 0.00014309       0.010750 

True label : Tau lepton

class 0 (electron)  class 1(jet)    class2(muon)   class3(tau lepton)
0.000590075         6.41879588    0.00014436       93.5804665



Confusion Matrix from the same model

94.23%

45.68%

90.64%

89.14%

15.41% 24.95% 13.95%

0.68% 4.5% 5.68%

7.27%0.82%1.27%

1.90% 0.04% 3.81%



Plans ahead…

Ø Our next plan is to apply this same machine learning techniques to identify 
“events” instead of identifying single object!

Ø And after that our plan will be to move to 3 dimensional machine learning of 
the detector and to modify our code for more complex cases of event 
reconstruction.





Backup slides

Optimization:

n Finding (one or more) minimizer of a function subject to constraints 

n Most of the machine learning problems are, in the end, optimization problems. 

Loss function: Categorical cross entropy : Loss function: Mean Squared error:



Stochastic gradient descent

This method performs a parameter update for each training example 
𝑥 " and label 𝑦(").

𝜃 = 𝜃 − 𝜂 ∗ 𝛻,𝐽(𝜃; 𝑥 " ; 𝑦("))

Update equation

Cod
e

We need to calculate the 
gradients for the whole dataset 
to perform just one update.

Note : we shuffle the training data at every epoch

Advantage

It is usually much faster than batch gradient descent.
It can be used to learn online.

Disadvantages

It performs frequent updates with a high variance that cause 
the objective function to fluctuate heavily.

Ruder, Sebastian. "An overview of gradient descent optimization algorithms." arXiv preprint arXiv:1609.04747 (2016).



RMSprop
RMSprop as well divides the learning rate by an exponentially 
decaying average of squared gradients. 

RMSprop

Ruder, Sebastian. "An overview of gradient descent optimization algorithms." arXiv preprint arXiv:1609.04747 (2016).



Adam
Adam’s feature : 

Storing an exponentially decaying average of past squared gradients 𝑣0 like 
Adadelta and RMSprop

Keeping an exponentially decaying average of past gradients 𝑚0, similar to 
momentum.

Counteracting these biases in Adam

Adam

Note : default values of 0.9 for 𝛽1, 
0.999 for 𝛽2, and 10−8 for 𝜀

Ruder, Sebastian. "An overview of gradient descent optimization algorithms." arXiv preprint arXiv:1609.04747 (2016).



Visualization of algorithms

As we can see, Adagrad, Adadelta, RMSprop, and Adam are most 
suitable and provide the best convergence for these scenarios.

Ruder, Sebastian. "An overview of gradient descent optimization algorithms." arXiv preprint arXiv:1609.04747 (2016).


