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Motivation:

e Strong galaxy-galaxy lensing

— Details of matter density profiles, evolution

— Constrain cosmological constants

Distance: 7.5 billion light years

What the telescope sees

* Strong Lensing detection

— Visual inspection
L4

Distant galaxy

— Automated codes using

* Morphology

* Machine learning

* Expected number of galaxy-galaxy strong lenses (eg. Collett 2015)

e DES: 2,400
e LSST: 120,000
e FEuclid: 170,000

1.6 billion light years

Quasar

(black hole + host galaxy)

- : Earth

e,

~ Gravitational lens bends the
light rays

Image credits: F. Courbin, S. G.
Djorgovski, G. Meylan, et al.,
Caltech / EPFL / WMKO



Mock telescope 1images: (Avestruz et. al. 2017)

LSST10

 Present:; HST
— HST: high res, .

low noise

e Future:
— LSST: low res,
6 bands

~ Budlid: high :
res, gray-scale LSST1




Simulated 1images (From Nan Li)
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Noisy data for training: 8,000 each, 45x45 pixels (0.18 arcsec/pixel)
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Convolutional neural networks (CNNs/ConvNets)

* Been around since early 1990s;
— Recently became mainstream due to GPUs. Surpassed human ability ~ 2015

* Applied in new image recognition systems, language processing, AlphaGo
e Lensing images study:

— Petrillo et. al. 2017 ( Kilo Degree Survey)

— Lanusse et. al. 2017 (CMU-DeepLens)
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Convolution layer

Input Volume (+pad 1) (7x7x3) i 0 (3x3x3) Filter W1 [3x3x3) Output Volume (3x3x2)
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— Pick up features, which are used as inputs for
activation

toggle movement



featuremaps-layer-1

Other layers

e Activation layer
— Introduces non-linearity
— Activation function: f(x) = max(0, x)
applied to all the values of input
array

-

* Pooling layer
e Dropout layer

* Dense layer
— Fully connected layer that checks
correlation between input and output
— Generally around the final layers

* Backpropagation
— End of every epoch, predicted labels are checked against real labels, and loss
(error) is calculated.

— We try to minimize this error in the next epoch, by updating weights
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Our SL detection framework

* Our network currently has 17 layers.

— Input image [45x45] — Conv — Actv — Conv — Act — Pool
— Drop — Conv — Actv — Pool — Drop — Flat — Dense —
Actv — Drop — Dense — Actv — Output label
[Prob(lensed), 1-Prob(lensed)]

— Can be made deeper or wider 5 comp | PO [P 2171

p
output: | (None,

* Lots of parameters to optimize: order of 10°

* Hyper-parameters to choose ~ 10 to 15
— Learning rate, decay rate o2 D

.
— Number Of epOChS flatten_1: Flatten

. ense_1: Dense
B

activation_4: Activation
— Dropout percentage

a . - dropout_3: Dropout

— Back-propagation optimizers ( SGD, RMSprop)
b lense_2: Dense

— Loss functions
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Hyper-parameters fine-tuning

* No quick rule to find the best hyper-parameters
— Sweep across all ranges, or choose randomly

* Monitor a few values during training and decide from there:
— Loss, Validation loss — how good are the weights

— Accuracy, Validation accuracy — how accurate is the model

—— ftrain_loss —— train_loss
val_loss : val_loss

—— frain_acc X —— ftrain_acc
val_acc val_acc
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Sample training

* Loss decreases, accuracy increases with — frinloss
epochs _

* Deviation of validation loss/accuracy
after 100 epochs

* Hyper-parameters
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— Learning rate: 0.001
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— Decay rate: 0.01 — wain_acc

val_acc

— Total epochs: 200 gy s o s 00

— Batch size: 32

o
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e 80 per cent accuracy in 30 mins on 1 Intel-Haswell node with 16 CPU cores (Cori)
* About the same time on NVIDIA GeForce GT 755M with 384 cores.



Testing data:

* Using the fully trained model,
with optimized weights

e Testing on completely new data

 (lassification time: O(107)
seconds per image

e Confusion matrix: probabilities
of correct and incorrect
classifications.
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Normalized confusion matrix

Predicted label




Preliminary testing results: True and False positives

True positives
303 211 294
204 152 143
40 0 20 40
30

«— Incorrect classifications

Correct classifications —

False positives
1257



Summary and future plans

* We’ve reached 80-90 percent accuracy within 200 epochs.

— Around 75-82 percent accuracy on new 1mages
— Lot of improvements can be made:

e Data augmentation
* Better hyper-parameter sweeps

* Deeper architectures can be trained using the state-of-the-art GPUs at
Argonne.

* Quantitative analysis of strong lensing

— Can we constrain properties of the lens using simulation-trained ConvNets?

— Currently we are working on regression problems



THIS 15 YOUR MACHINE LEARNING SYSTET?

YUP! YOU POUR THE DATA INTO THIS BIG
PILE OF LINEAR ALGEBRA, THEN COLLECT
THE ANSLJERS ON THE OTHER SIDE.

WHAT IF THE ANSLIERS ARE WRONG? J

JUST STIR THE PILE UNTIL
THEY START [OOKING RIGHT.

Questions?

https://xkcd.com/1838/
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