Strong Lensing analysis using Deep Neural Networks

Nesar Ramachandra Wasikul Islam Nan Li J. Taylor Childers Prasanna Balaprakash Lindsey Bleem Salman Habib

18 July 2017

Motivation:

- Strong galaxy-galaxy lensing
 - Details of matter density profiles, evolution
 - Constrain cosmological constants
- Strong Lensing detection
 - Visual inspection
 - Automated codes using
 - Morphology
 - Machine learning

Image credits: F. Courbin, S. G. Djorgovski, G. Meylan, et al., Caltech / EPFL / WMKO

- Expected number of galaxy-galaxy strong lenses (eg. Collett 2015)
 - DES: 2,400
 - LSST: 120,000
 - Euclid: 170,000

Mock telescope images: (Avestruz et. al. 2017)

- Present:
 - HST: high res, low noise
- Future:
 - LSST: low res,6 bands
 - Euclid: high res, gray-scale

Simulated images (From Nan Li)

Noisy data for training: 8,000 each, 45x45 pixels (0.18 arcsec/pixel)

Convolutional neural networks (CNNs/ConvNets)

- Been around since early 1990s;
 - Recently became mainstream due to GPUs. Surpassed human ability ~ 2015
- Applied in new image recognition systems, language processing, AlphaGo
- Lensing images study:
 - Petrillo et. al. 2017 (Kilo Degree Survey)
 - Lanusse et. al. 2017 (CMU-DeepLens)

Convolution layer

http://cs231n.github.io/convolutional-networks/

Convolution

Filters/kernels of various types

Pick up features, which are used as inputs for activation

Other layers

- Activation layer
 - Introduces non-linearity
 - Activation function: f(x) = max(0, x)
 applied to all the values of input array
- Pooling layer
- Dropout layer
- Dense layer
 - Fully connected layer that checks correlation between input and output
 - Generally around the final layers

Backpropagation

- End of every epoch, predicted labels are checked against real labels, and loss (error) is calculated.
- We try to minimize this error in the next epoch, by updating weights

Our SL detection framework

- Our network currently has 17 layers.
 - Input image [45x45] → Conv → Actv → Conv → Act → Pool
 → Drop → Conv → Actv → Pool → Drop → Flat → Dense →
 Actv → Drop → Dense → Actv → Output label
 [Prob(lensed), 1-Prob(lensed)]
 - Can be made deeper or wider
- Lots of parameters to optimize: order of 10⁶
- Hyper-parameters to choose ~ 10 to 15
 - Learning rate, decay rate
 - Number of epochs
 - Batch size
 - Dropout percentage
 - Back-propagation optimizers (SGD, RMSprop)
 - Loss functions

Hyper-parameters fine-tuning

- No quick rule to find the best hyper-parameters
 - Sweep across all ranges, or choose randomly
- Monitor a few values during training and decide from there:
 - Loss, Validation loss how good are the weights
 - Accuracy, Validation accuracy how accurate is the model

Sample training

- Loss decreases, accuracy increases with epochs
- Deviation of validation loss/accuracy after 100 epochs
- Hyper-parameters
 - Learning rate: 0.001
 - Decay rate: 0.01
 - Total epochs: 200
 - Batch size: 32

- 80 per cent accuracy in 30 mins on 1 Intel-Haswell node with 16 CPU cores (Cori)
- About the same time on NVIDIA GeForce GT 755M with 384 cores.

Testing data:

- Using the fully trained model, with optimized weights
- Testing on completely new data
- Classification time: O(10⁻³) seconds per image
- Confusion matrix: probabilities of correct and incorrect classifications.

Preliminary testing results: True and False positives

Summary and future plans

- We've reached 80-90 percent accuracy within 200 epochs.
 - Around 75-82 percent accuracy on new images
 - Lot of improvements can be made:
 - Data augmentation
 - Better hyper-parameter sweeps
 - Deeper architectures can be trained using the state-of-the-art GPUs at Argonne.
- Quantitative analysis of strong lensing
 - Can we constrain properties of the lens using simulation-trained ConvNets?
 - Currently we are working on regression problems

Questions?

References

- https://github.com/hep-cce/ml_classification_studies
- · http://cs231n.github.io/convolutional-networks/
- · CMU DeepLens: Deep Learning For Automatic Image-based Galaxy-Galaxy Strong Lens Finding, Lanusse et. al. 2017 (arXiv: 1703.02642)
- · Finding Strong Gravitational Lenses in the Kilo Degree Survey with Convolutional Neural Networks, Petrillo et. al. 2017 (arXiv: 1702.07675)
- · Automated Lensing Learner I: An Automated Strong Lensing Identification Pipeline, Avestruz et. al. 2017 (arXiv: 1704.02322)
- The population of galaxy-galaxy strong lenses in forthcoming optical imaging surveys, Collett (arXiv: 1507.02657)