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Motivation: 

● Strong galaxy-galaxy lensing

– Details of matter density profiles, evolution

– Constrain cosmological constants

● Strong Lensing detection

– Visual inspection 

– Automated codes using 
● Morphology 
● Machine learning

● Expected number of galaxy-galaxy strong lenses (eg. Collett 2015)

● DES: 2,400                 
● LSST: 120,000                
● Euclid: 170,000

Image credits: F. Courbin, S. G. 
Djorgovski, G. Meylan, et al., 
Caltech / EPFL / WMKO



  

Mock telescope images: (Avestruz et. al. 2017)

● Present:
– HST: high res, 

low noise  
● Future:

– LSST: low res, 
6 bands

– Euclid: high 
res, gray-scale



  

Simulated images (From Nan Li)

← Noiseless single

← Noiseless stack

Noiseless single → 

Noiseless stack → 

← Lensed

Unlensed → 



  

Noisy data for training: 8,000 each, 45x45 pixels (0.18 arcsec/pixel) 

Noisy single → 

Noisy stack → 

← Noisy single

← Noisy stack

Lensed → 

    ← Unlensed



  

Convolutional neural networks (CNNs/ConvNets)

● Been around since early 1990s; 

– Recently became mainstream due to GPUs. Surpassed human ability ~ 2015
● Applied in new image recognition systems, language processing, AlphaGo 

● Lensing images study:

– Petrillo et. al. 2017 ( Kilo Degree Survey)
– Lanusse et. al. 2017 (CMU-DeepLens)

LeNet, 1998



  

Convolution layer

http://cs231n.github.io/convolutional-networks/

● Filters/kernels of various types
– Stride through every image

– Pick up features, which are used as inputs for 
activation 

➔
Convolution
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Other layers
● Activation layer

– Introduces non-linearity
– Activation function: f(x) = max(0, x) 

applied to all the values of input 
array

● Pooling layer

● Dropout layer 

● Dense layer 
– Fully connected layer that checks 

correlation between input and output
– Generally around the final layers 

● Backpropagation
– End of every epoch, predicted labels are checked against real labels, and loss 

(error) is calculated.
 

– We try to minimize this error in the next epoch, by updating weights



  

Our SL detection framework

● Our network currently has 17 layers.

– Input image [45x45] → Conv → Actv → Conv → Act → Pool 
→ Drop → Conv → Actv → Pool → Drop → Flat → Dense → 
Actv → Drop → Dense → Actv → Output label 
[Prob(lensed), 1-Prob(lensed)] 

– Can be made deeper or wider

● Lots of parameters to optimize: order of 106

● Hyper-parameters to choose ~ 10 to 15

– Learning rate, decay rate

– Number of epochs

– Batch size

– Dropout percentage

– Back-propagation optimizers ( SGD, RMSprop)

– Loss functions



  

➔  ➔

➔ ➔
 
➔

ActivationConvolution

Pooling
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Hyper-parameters fine-tuning
● No quick rule to find the best hyper-parameters

– Sweep across all ranges, or choose randomly

● Monitor a few values during training and decide from there:

– Loss, Validation loss – how good are the weights

– Accuracy, Validation accuracy – how accurate is the model  



  

Sample training

● Loss decreases, accuracy increases with 
epochs

● Deviation of validation loss/accuracy 
after 100 epochs

● Hyper-parameters

– Learning rate: 0.001

– Decay rate: 0.01 

– Total epochs: 200

– Batch size: 32

● 80 per cent accuracy in 30 mins on 1 Intel-Haswell node with 16  CPU cores (Cori) 
● About the same time on NVIDIA GeForce GT 755M with 384 cores. 



  

Testing data:  

● Using the fully trained model, 
with optimized weights

● Testing on completely new data

● Classification time: O(10-3) 
seconds per image

● Confusion matrix: probabilities 
of correct and incorrect 
classifications. 



  

Preliminary testing results: True and False positives

← Incorrect classifications

Correct classifications →



  

Summary and future plans

● We’ve reached 80-90 percent accuracy within 200 epochs. 

– Around 75-82 percent accuracy on new images
– Lot of improvements can be made:

● Data augmentation 
● Better hyper-parameter sweeps
● Deeper architectures can be trained using the state-of-the-art GPUs at 

Argonne. 

● Quantitative analysis of strong lensing

– Can we constrain properties of the lens using simulation-trained ConvNets?
– Currently we are working on regression problems



  

Questions?

https://xkcd.com/1838/
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