

 Strong Lensing analysis using
Deep Neural Networks

Nesar Ramachandra
Wasikul Islam
Nan Li
J. Taylor Childers
Prasanna Balaprakash
Lindsey Bleem
Salman Habib

18 July 2017

Motivation:

● Strong galaxy-galaxy lensing

– Details of matter density profiles, evolution

– Constrain cosmological constants

● Strong Lensing detection

– Visual inspection

– Automated codes using
● Morphology
● Machine learning

● Expected number of galaxy-galaxy strong lenses (eg. Collett 2015)

● DES: 2,400
● LSST: 120,000
● Euclid: 170,000

Image credits: F. Courbin, S. G.
Djorgovski, G. Meylan, et al.,
Caltech / EPFL / WMKO

Mock telescope images: (Avestruz et. al. 2017)

● Present:
– HST: high res,

low noise
● Future:

– LSST: low res,
6 bands

– Euclid: high
res, gray-scale

Simulated images (From Nan Li)

← Noiseless single

← Noiseless stack

Noiseless single →

Noiseless stack →

← Lensed

Unlensed →

Noisy data for training: 8,000 each, 45x45 pixels (0.18 arcsec/pixel)

Noisy single →

Noisy stack →

← Noisy single

← Noisy stack

Lensed →

 ← Unlensed

Convolutional neural networks (CNNs/ConvNets)

● Been around since early 1990s;

– Recently became mainstream due to GPUs. Surpassed human ability ~ 2015
● Applied in new image recognition systems, language processing, AlphaGo

● Lensing images study:

– Petrillo et. al. 2017 (Kilo Degree Survey)
– Lanusse et. al. 2017 (CMU-DeepLens)

LeNet, 1998

Convolution layer

http://cs231n.github.io/convolutional-networks/

● Filters/kernels of various types
– Stride through every image

– Pick up features, which are used as inputs for
activation

➔
Convolution

➔

Other layers
● Activation layer

– Introduces non-linearity
– Activation function: f(x) = max(0, x)

applied to all the values of input
array

● Pooling layer

● Dropout layer

● Dense layer
– Fully connected layer that checks

correlation between input and output
– Generally around the final layers

● Backpropagation
– End of every epoch, predicted labels are checked against real labels, and loss

(error) is calculated.

– We try to minimize this error in the next epoch, by updating weights

Our SL detection framework

● Our network currently has 17 layers.

– Input image [45x45] → Conv → Actv → Conv → Act → Pool
→ Drop → Conv → Actv → Pool → Drop → Flat → Dense →
Actv → Drop → Dense → Actv → Output label
[Prob(lensed), 1-Prob(lensed)]

– Can be made deeper or wider

● Lots of parameters to optimize: order of 106

● Hyper-parameters to choose ~ 10 to 15

– Learning rate, decay rate

– Number of epochs

– Batch size

– Dropout percentage

– Back-propagation optimizers (SGD, RMSprop)

– Loss functions

➔ ➔

➔ ➔

➔

ActivationConvolution

Pooling
Dropout Convolution

Hyper-parameters fine-tuning
● No quick rule to find the best hyper-parameters

– Sweep across all ranges, or choose randomly

● Monitor a few values during training and decide from there:

– Loss, Validation loss – how good are the weights

– Accuracy, Validation accuracy – how accurate is the model

Sample training

● Loss decreases, accuracy increases with
epochs

● Deviation of validation loss/accuracy
after 100 epochs

● Hyper-parameters

– Learning rate: 0.001

– Decay rate: 0.01

– Total epochs: 200

– Batch size: 32

● 80 per cent accuracy in 30 mins on 1 Intel-Haswell node with 16 CPU cores (Cori)
● About the same time on NVIDIA GeForce GT 755M with 384 cores.

Testing data:

● Using the fully trained model,
with optimized weights

● Testing on completely new data

● Classification time: O(10-3)
seconds per image

● Confusion matrix: probabilities
of correct and incorrect
classifications.

Preliminary testing results: True and False positives

← Incorrect classifications

Correct classifications →

Summary and future plans

● We’ve reached 80-90 percent accuracy within 200 epochs.

– Around 75-82 percent accuracy on new images
– Lot of improvements can be made:

● Data augmentation
● Better hyper-parameter sweeps
● Deeper architectures can be trained using the state-of-the-art GPUs at

Argonne.

● Quantitative analysis of strong lensing

– Can we constrain properties of the lens using simulation-trained ConvNets?
– Currently we are working on regression problems

Questions?

https://xkcd.com/1838/

References
• https://github.com/hep-cce/ml_classification_studies

• http://cs231n.github.io/convolutional-networks/

• CMU DeepLens: Deep Learning For Automatic Image-based Galaxy-Galaxy Strong
Lens Finding, Lanusse et. al. 2017 (arXiv: 1703.02642)

• Finding Strong Gravitational Lenses in the Kilo Degree Survey with Convolutional
Neural Networks, Petrillo et. al. 2017 (arXiv: 1702.07675)

• Automated Lensing Learner - I: An Automated Strong Lensing Identification Pipeline,
Avestruz et. al. 2017 (arXiv: 1704.02322)

• The population of galaxy-galaxy strong lenses in forthcoming optical imaging surveys,
Collett (arXiv: 1507.02657)

https://github.com/hep-cce/ml_classification_studies
http://cs231n.github.io/convolutional-networks/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

