## New high- $p_T$ probes of nonstandard physics

**Bogdan Dobrescu** 

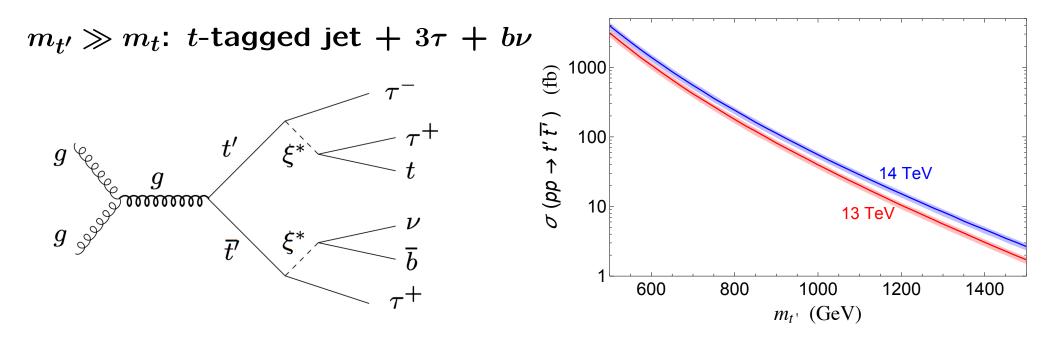
Fermilab, Theoretical Physics Department

- Exotic decays of vectorlike quarks (with Felix Yu, 1612.01909)
- Cascade decays of a leptophobic Z' (1506.04435)
- W' decays into heavy Higgs bosons (with Andrea Peterson 1312.1999)
- Signatures of a Gluon-prime boson (with Yang Bai, 1012.5814)
- Loop decays:  $Z' 
  ightarrow h^0 \gamma$  (with Patrick Fox and John Kearney, 1705.08433)

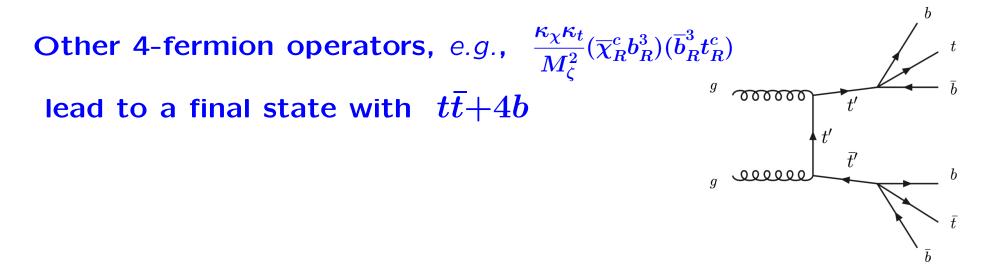
July 28, 2017 – talk at the US ATLAS Workshop

## Exotic decays of vectorlike quarks

with Felix Yu, 1612.01909


A vectorlike quark  $\chi$  that transforms as (3,1,+2/3) under  $SU(3)_c \times SU(2)_W \times U(1)_Y$  would mix with the SM top quark.

Mass eigenstates: t and t'. Mixing  $\sin \theta_L \equiv s_L$ .

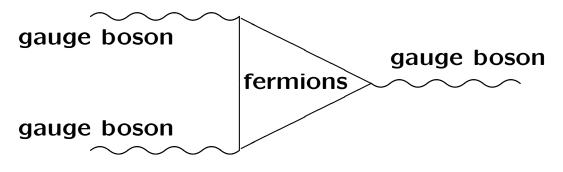

'Standard' widths of t': 
$$\Gamma(t' \to W^+ b) = \frac{s_L^2 m_{t'}^3}{32\pi v_H^2} \left[ 1 + O\left(\frac{M_W^4}{m_{t'}^4}\right) \right]$$
  
 $\Gamma(t' \to Zt) \approx \Gamma(t' \to ht) = \frac{s_L^2 c_L^2 m_{t'}^3}{64\pi v_H^2} \left[ 1 + O\left(\frac{m_t^2}{m_{t'}^2}\right) \right]$ 

For  $s_L \ll 1$ , exotic decays of vectorlike quarks could dominate!

*E.g.*, 4-fermion operator  $(\overline{\chi}_R l_L^3) i \sigma_2(\overline{\tau}_R q_L^3) \Rightarrow t' \to \tau^+ \tau^- t$ ,  $\tau^+ \nu b$ Example of UV completion: scalar leptoquark  $\xi$  heavier than t'.



More LHC signatures:  $t\bar{t} + 4\tau$ ,  $t\bar{t}\tau^+\tau^-\nu\nu$ ,  $tb\tau + 3\nu$  or  $t\bar{t} + 4\nu$ .




Spin-1 fields are well behaved in the UV provided that they are bound states (not discussed here) or gauge bosons.

New gauge bosons (Z', W', G', ...) require more particles:

- The new gauge symmetry must be spontaneously broken. Simple choice: a new scalar field  $\phi$  acquires a VEV.
- All  $U(1)_B$  gauge anomalies must cancel

 $\Rightarrow$  there must be new fermions ("anomalons"), which are vectorlike with respect to  $SU(3)_c \times SU(2)_W \times U(1)_Y$ , and chiral with respect to the new gauge group, with charges such that the sums over fermion triangle diagrams vanish.



# Flavor-universal leptophobic Z'

## New fields carrying $U(1)_B$ charge in a minimal model:

B.A. Dobrescu, C. Frugiuele, 1404.3947

| field                                  | spin | $SU(3)_c$ | $SU(2)_W$ | $U(1)_Y$ | $U(1)_B$                             |
|----------------------------------------|------|-----------|-----------|----------|--------------------------------------|
| $egin{array}{c} L_L \ L_R \end{array}$ | 1/2  | 1         | 2         | -1/2     | $egin{array}{c} -1 \ +2 \end{array}$ |
| $egin{array}{c} E_L \ E_R \end{array}$ | 1/2  | 1         | 1         | -1       | $+2 \\ -1$                           |
| $egin{array}{c} N_L \ N_R \end{array}$ | 1/2  | 1         | 1         | 0        | $+2 \\ -1$                           |
| $\phi$                                 | 0    | 1         | 1         | 0        | +3                                   |

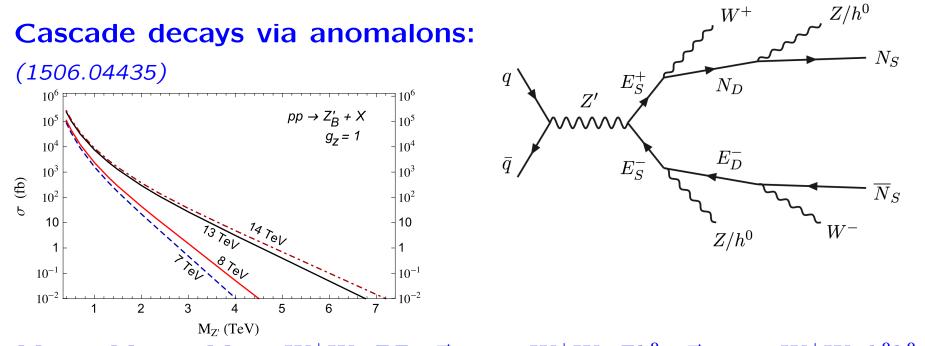
There are two charged "anomalons", E and  $L^e$ , which can mix, and two neutral anomalons, N and  $L^{\nu}$ , which can also mix.

$${\cal L}_{N {
m mass}} = - \left( \overline{N}_{R} \ , \ \overline{L}_{R}^{oldsymbol{
u}} 
ight) \left( egin{array}{cc} y_{N} \langle \phi 
angle & y_{NL} v_{H} \ y_{LN} e^{i heta_{N}} v_{H} & y_{L} \langle \phi 
angle \end{array} 
ight) \left( egin{array}{cc} N_{L} \ L_{L}^{oldsymbol{
u}} \end{array} 
ight) + {
m H.c.}$$

Left-handed neutral anomalons in the mass eigenstate basis:

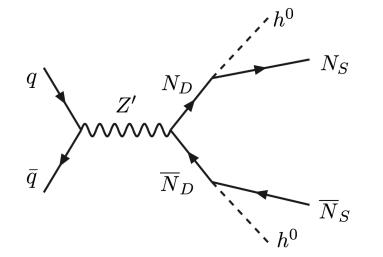
$$\left(\begin{array}{c} N_{S_L} \\ N_{D_L} \end{array}\right) = \left(\begin{array}{cc} c_N & -s_N \\ s_N & c_N \end{array}\right) \left(\begin{array}{c} N_L \\ L_L^\nu \end{array}\right)$$

Small mass splitting between the charged and neutral physical states that are mostly part of the weak-doublet anomalon:

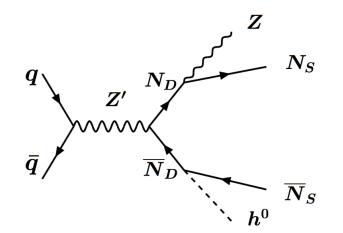

The decays of the anomalons depend on their mass ordering. (1506.04435)

 $U(1)_B$  symmetry is spontaneously broken down to  $Z_3$ . The anomalons have  $Z_3$  charge +1

 $\Rightarrow$  lightest anomalon is stable (in the minimal model), can be a DM component if it is  $N_S$ .


If  $m_{E_S} > m_{E_D} \approx m_{N_D} > m_{N_S}$ :  $E_S$  decays into  $N_D W$ ,  $E_D Z$  or  $E_D h^0$  ( $N_S W$  has small BR)  $E_D$  decays mostly into  $N_S W$ 

 $N_D$  decays into  $N_S\,h^0$  or  $N_S\,Z$  (equal BR's for  $m_{N_D}-m_{N_S}\gg M_h$ )



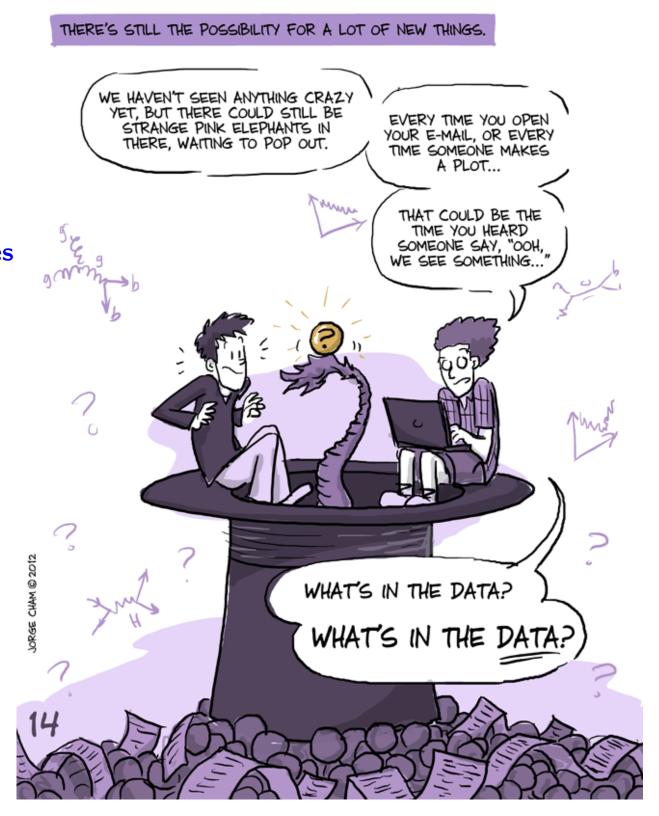

 $egin{aligned} M_{Z'} &> 2M_{E_S} > 2M_{E_D} \colon W^+W^-ZZ + E_T \,, \,\,\, ext{or}\,\, W^+W^-Zh^0 + E_T \,, \,\,\, ext{or}\,\, W^+W^-h^0h^0 + E_T \,, \ M_{Z'} &> 2M_{E_S} \gg 2M_{E_D} \colon \,\,\, 4V \,\,\, ext{or}\,\, h^0 - ext{tagged jets} \,+ \,\, E_T \,, \ M_{Z'} &\gg M_{E_S} \colon \,\, ext{two}\,\, (WZ) \,\,\, ext{or}\,\, (Wh^0) - ext{tagged jets} \,+ \,\, E_T \,. \end{aligned}$ 

## For $M_{Z'} \gg M_{N_D}$ or $M_{N_D} \gg M_{N_S}$ :








 $h^0$ -tagged jet + Z-tagged jet +  $E_T$ 

Also:  $ZZ + \not\!\!\!E_T$  , or  $W^+W^- + \not\!\!\!E_T$ .

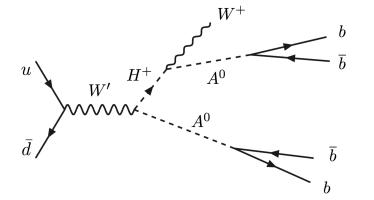
Many hiding places for new physics.

There are lots of new searches that ATLAS and CMS can and should do.

There is no substitute for dedicated searches.

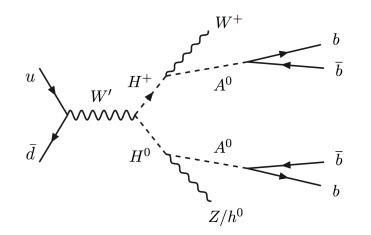


phdcomics.com/higgs


# W' decays into heavy Higgs bosons

(with Andrea Peterson 1312.1999)

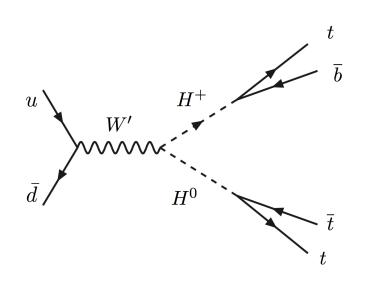
|                                      | $SU(3)_c$ | $SU(2)_1$ | $SU(2)_2$      | $U(1)_Y$                  |
|--------------------------------------|-----------|-----------|----------------|---------------------------|
| $\Delta$                             | 1         | 2         | $\overline{2}$ | 0                         |
| Φ                                    | 1         | 2         | 1              | $+rac{1}{2}$             |
| $egin{array}{c} Q_L,L_L \end{array}$ | 3,1       | 2         | 1              | $+rac{1}{6},-rac{1}{2}$ |
| $u_R,d_R$                            | 3         | 1         | 1              | $+rac{2}{3},-rac{1}{3}$ |
| $e_R$                                | 1         | 1         | 1              | +1                        |


Meta-sequential W': same couplings to fermions as the W up to an overall parameter,  $0.2 \lesssim \tan \theta \lesssim 1$ .

Higgs sector includes  $H^+, H^0, A^0$ : odd states under  $Z_2$  symmetry. Dominant decay modes:  $W' \to H^+ A^0$  and  $H^+ H^0$  for  $\tan \theta < 0.5$ . Lightest odd Higgs,  $A^0$ , may be stable (signals:  $W + E_T$ , or  $WZ + E_T$ ), or could decay into a pair of the heaviest fermions (through small  $Z_2$  breaking).



For  $M_{W'} > M_{H^+} > M_{A^0}$ : two  $(b\bar{b})$  resonances + W For  $M_{W'} \gg M_{H^+}$ :  $(h\bar{h})$  tagged int +  $(h\bar{h}\,i\,i)$  tagged int


 $(bar{b})$ -tagged jet +  $(bar{b}jj)$ -tagged jet



For  $M_{W'} > M_{H^+} \gg M_{A^0}$ : two  $(b\bar{b})$  resonances  $+ ~W + (Z ~{
m or}~ h^0)$ For  $M_{W'} \gg M_{H^+}$ : two  $(b\bar{b}jj)$ -tagged jets

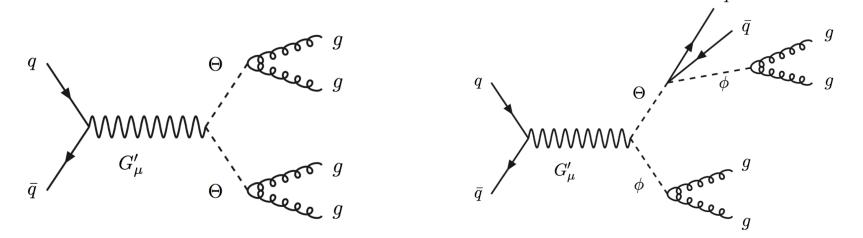
## <u>Different W' model</u>: $SU(2)_L \times SU(2)_R \times U(1)_{B-L}$

Heavy Higgs bosons decay directly into a pair of the heaviest fermions:



For  $M_{W'} \gg M_{H^+}$ :  $(t\bar{b})$ -tagged jet +  $(t\bar{t})$ -tagged jet For  $M_{W'} > M_{H^+} \gg m_t$ : three t-tagged jets + b For  $M_{W'} > M_{H^+} > m_t$ :  $W^+W^+W^- + 4b$ 

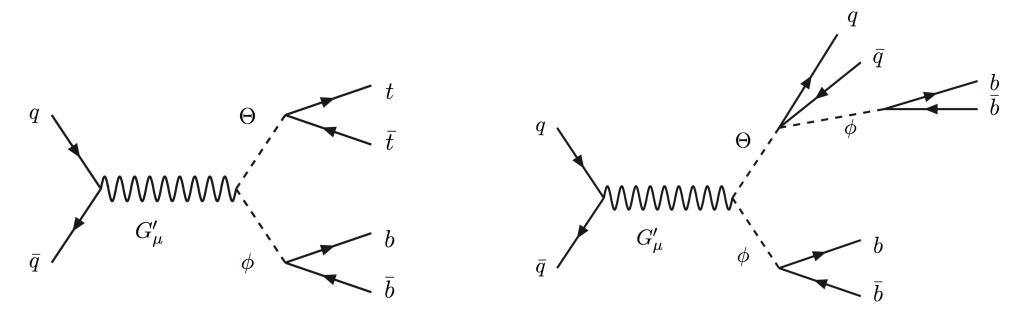
(with Zhen Liu, 1507.01923)


Could be responsible for an interesting excess in the ATLAS searches for  $\ell^+\ell^+ + (\geq 3)b$  and  $\ell^+\ell^+bb$  (1504.04605)

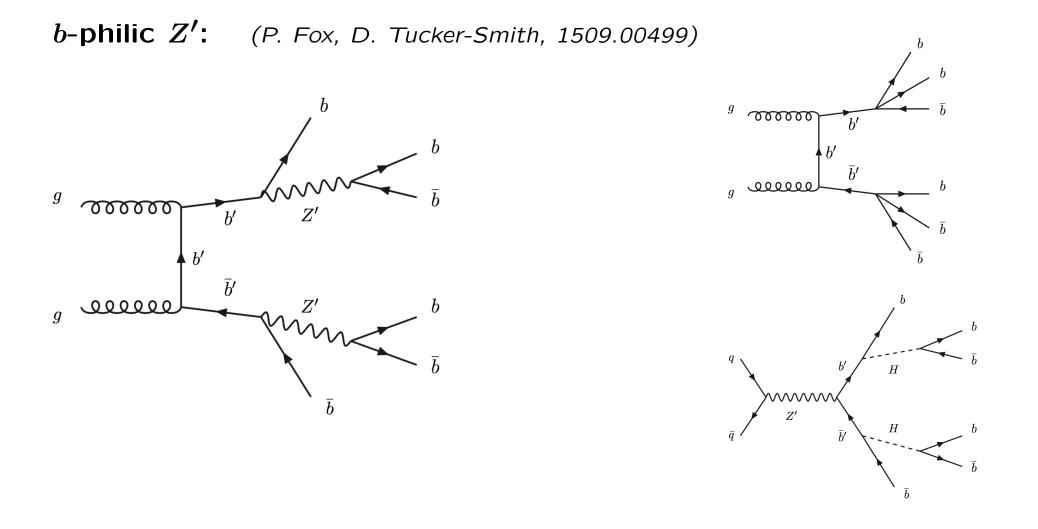
# G' decays into heavy scalars

Heavy color-octet of spin-1: gluon-prime or coloron (G')

**Renormalizable Coloron Model:** (with Yang Bai, 1012.5814)  $SU(3)_1 \times SU(3)_2$  gauge symmetry broken down to  $SU(3)_c$  by the VEV of a (3,3) scalar. Physical states: G', a color-octet scalar  $\Theta$ , a singlet pseudo-scalar  $\phi$ .


Signals for  $M_{\Theta} < M_{\phi}$  , or  $M_{\Theta} > M_{\phi}$ : resonant dijet pairs , or 6j (with two dijet resonances)

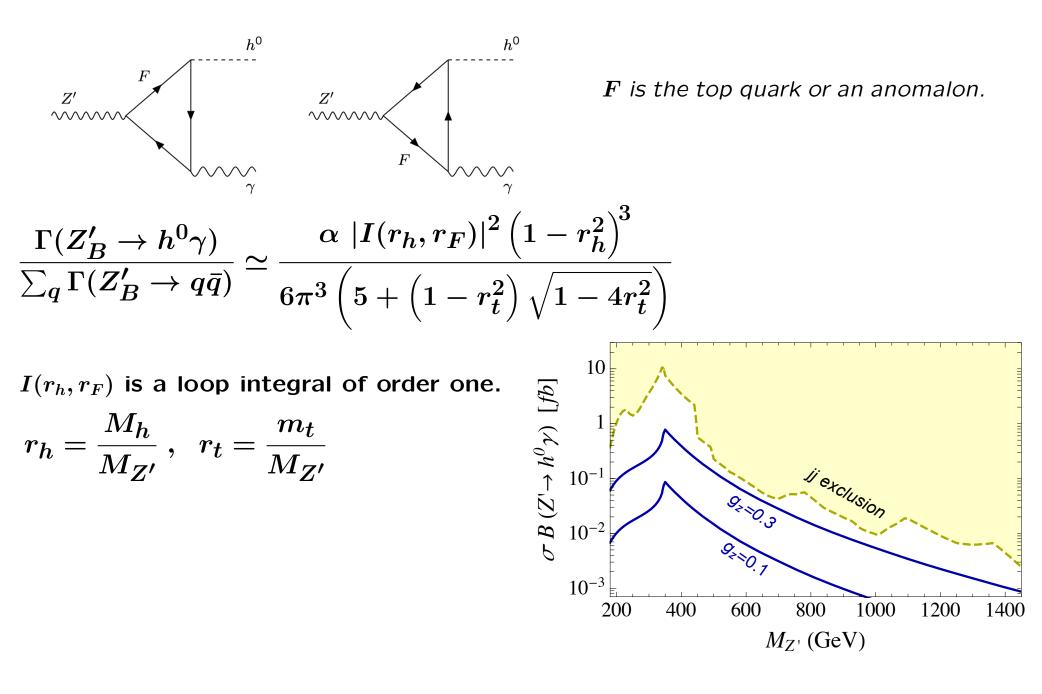



Signal for long-lived  $\phi$ : two displaced jj resonances + 2 prompt jets

#### More signatures in the Renormalizable Coloron Model:

Vectorlike quarks of multi-TeV mass may mediate other decays for the color-octet scalar  $\Theta$  and the singlet pseudo-scalar  $\phi$ .




Signal for  $M_{G'} > M_{\Theta}, M_{\phi}$ :  $t\bar{t} + b\bar{b}$ , or two  $b\bar{b}$  resonances + jets Signal for  $M_{G'} \gg M_{\Theta}, M_{\phi}$ :  $(t\bar{t})$ - "jet" +  $(b\bar{b})$ - "jet", or  $(b\bar{b}jj)$ - "jet" +  $(b\bar{b})$ - "jet" Signal for long-lived  $\phi$  (and maybe  $\Theta$ ): displaced  $t\bar{t}b\bar{b}$ , or two displaced  $b\bar{b}$  resonances + prompt jj



**Paddy Fox:** "when you do a search for a certain topology, do also the related searches for other topologies in the same final state".

### Higgs-photon resonance: $Z' \rightarrow h^0 \gamma$

B.A. Dobrescu, P.J.. Fox and J. Kearney, 1705.08433



LHC is exploring "Terra Incognita"  $\rightarrow$  huge potential for surprises

Many additional searches (and novel techniques – jet substructure, quark vs. gluon jets, etc.) necessary for probing new physics

• Vectorlike quarks may have exotic signatures:  $t'\bar{t}' \rightarrow t\bar{b}\tau + E_T \dots$ 

• Z' boson may undergo cascade decays through anomalons, leading to final states with W, Z, Higgs bosons and  $E_T$ .

• W' boson may decay into heavy Higgs bosons, leading to final states with W, Z, Higgs bosons and heavy quarks.

• G' boson may decay into color-octet scalars, leading to multijet final states, or signals with  $t\bar{t}$ +jets, or displaced vertices...

• Z' bosons have interesting rare decays:  $Z' 
ightarrow h^0 \gamma \, , \, ...$ 

Bogdan Dobrescu (Fermilab)