
Design Sharing in HEP

Design Sharing for HEP IC Development

Carl Grace
Lawrence Berkeley National Laboratory

October 6, 2017

Design Sharing in HEP 2

A brief comment on definitions…

• Intellectual Property (IP) is an unfortunate name for
“semiconductor design data”

• The term IP has specific meanings to legal folks that may or
may not apply to the design data under consideration in a
specific case

• IP is the standard term in the industry, so when I use it I
mean “design data”

• I have struggled with this personally, trying to get our tech
transfer office to understand exactly what it was I wanted to
license from ARM…

Design Sharing in HEP

The complexity of modern ICs (especially SoCs) has driven the semiconductor
industry more to an Intellectual Property model, where a complex system chip is
largely an aggregation of third-party blocks, and the differentiation is primarily in
the software (or sometimes the front end).

The IP Approach to SoC Design

Typical SoC

3

Design Sharing in HEP 4

Problems with SoC approach
1. Complexity (notice the similarity to why IC Design is getting harder…)

Industrial SoCs are incredibly complex, and require integration of hard and soft
IP for memories, embedded processors, bus logic, analog, power management,
clocking, etc., etc.

2. Cost

Dealing with such complexity requires a lot of staff and a lot of money. Each in
the institution HEP community cannot possibly independently develop all the
needed IP, and integration would cause verification problems that are probably
not solvable with our resources.

3. Fitness-to-Purpose

In HEP the value is typically added in the front end and we usually don’t have
the same pressures to integrate lots of different peripheral blocks (sometimes
we do though).

Design Sharing in HEP 5

“IP-lite approach”

• Often the same kinds of smaller blocks show up in our chips
in HEP (and in other DOE-related applications)
• Bandgaps, ADCs, DACs, serializers, PLLs, configuration RTL blocks,

memories, etc

• These can be taken from old projects on an ad-hoc basis
• Cross-project sharing is mostly confined to single institutions

• What are the barriers to cross institution sharing?

• Can we come up with something useful that will extend our
reach?

• Can’t really use design sharing to differentiate

Design Sharing in HEP 6

Soft IP sharing

• Easiest target is synthesizable RTL

• Could share silicon-proven small RTL blocks (e.g. I2C or SPI
interfaces) or larger subsystems (e.g. JESD204B TX protocol)
in git repository

• Potentially useful because RTL is process-agnostic

• Would the effort to make a block reusable
(documentation/generalization) be worth it?
• And who exactly would pay for it?

• Are there licensing issues here (especially with the national
labs)?

Design Sharing in HEP 7

Analog Design Sharing

• Why is Analog Design sharing so hard?

• Analog designs are tightly tied to a given process (even at
same node)
• Last year I ported an LVDS receiver from one 180 nm process to

another and had to redesign the common-mode feedback because it
oscillated in the new process! Astounding!

• We in HEP primarily get our value from analog performance

and the power/performance tradeoff can be brutal (almost
impossible to reuse a charge amp, for instance)

• In industry, SoCs typically have relaxed specs for analog and
companies care mostly about cost & software (not us!)

Design Sharing in HEP 8

Analog Design Sharing

• Analog design sharing can work well in two cases:

1. Noncritical functionality that is silicon proven

2. Functionality is so critical that ASIC is “built-around” the

IP (e.g. many of LBNL’s imagers use the same pixel and
change the periphery circuits for differentiation)

• Designing around core functionality leads to Platform-Based
Design which is another important trend in industry

• With Platforms, we focus only one what adds value (usually
the low-noise front end or pixel circuit), and plug in
everything else we need to turn it into a system

Design Sharing in HEP 9

Software Infrastructure

Can smaller organizations specialize to provide a joint, cross-design group capability?

• Design entry (schematic and physical
layout design)

• Simulation (analog, digital, mixed-mode)

• Synthesis

• Automatic Place-and-Route

• Static Timing Analysis / Formal verification

• DRC/LVS verification

• FPGA firmware development environment

• Board development suite

• Test framework, instrument control

• Design-space exploration (MATLAB or
similar)

Required Team Competencies

• Transistor-level analog and mixed-signal
design

• Digital RTL development

• Physical Design and Verification

• System-level Validation

• Analog/Digital co-simulation

• Behavioral Modeling

• Project management

• Board-level circuit design

• FPGA firmware development

• Teststand software development

• Advanced test execution and debug

Only the largest organizations have the resources to do a system-level IC end-to-end alone.

IC Development Infrastructure (just add money!)

Design Sharing in HEP

• Most readout systems look broadly
similar

• A platform can embody these
commonalities

• Individual readout ICs are instances of
the common platform

• Dramatic improvements in design
productivity and tractability

• Enables small teams to complete
projects that would be impossible
using an ad-hoc approach

10

A. Sangiovanni Vincentelli, UC Berkeley

Leads directly to improved top-down design methodologies

Sow once Reap many times
Each new chip is a platform instance instead of a scratch design

Platform-Based Design

Design Sharing in HEP

• Platform is an integrated system designed for modification and extensibility

• Choose flexible macros for reuse

• Process, block interfaces, and characteristics standardized
– e.g. 65nm CMOS, pitch matching, electrical interfaces, biasing requirements

• Platform includes set of pin-accurate functional models in Verilog-AMS
– Models allow rapid development of platform instances

11

Enables digital-centric design approach lower cost and higher performance

Verilog-AMS

Verilog Verilog-A
Verilog-AMS allows full
system simulation
(analog + digital)

Platform-Based Design

Design Sharing in HEP 12

Successes with Platform-Based Design

• SLAC has been very successful with their ePix/tPix/etc
platforms. We can (and should) all learn from this.

• FNAL’s test platform development great speeds development
and saves a lot of money

• Similarly, LBNL’s imager platform shortens design time and
simplifies evaluation and camera development, but our
platform isn’t as developed as SLAC’s

• Other platforms in the community go a long way to helping us
punch above our weight (e.g. pixel chips, etc.)

Design Sharing in HEP 13

Key Issues with Platform-Based Design

• Can we identify a platform that would be useful?

1. Is there enough commonality in our designs?

• How do we fund platform development?
1. May be natural to take an existing part as first iteration,

but then how do we “compensate” the lead institution?

• Would the handcuffs of Platforms hurt more than help?

Design Sharing in HEP 14

Summary

• With chips getting more complex, an IP approach is attractive

• We probably shouldn’t follow industry too far down the SoC
rabbit hole

• We have had success in HEP sharing within a project/collab

• There are significant barriers (e.g. licensing, tool usage,
effort) to doing even the simplest cross-project sharing

• There has been success with platform-based design (which is
a kind of sharing). We should be doing this as much as makes
sense.

Design Sharing in HEP 15

Other Perspectives

